Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Multi-Objective Machine Learning, Yaochu Jin


Варианты приобретения
Цена: 36570.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Yaochu Jin
Название:  Multi-Objective Machine Learning
ISBN: 9783642067969
Издательство: Springer
Классификация:



ISBN-10: 3642067964
Обложка/Формат: Paperback
Страницы: 660
Вес: 1.02 кг.
Дата издания: 2006
Серия: Studies in Computational Intelligence
Язык: English
Издание: 1st ed. softcover of
Иллюстрации: 254 black & white illustrations, 104 black & white tables, biography
Размер: 234 x 156 x 35
Читательская аудитория: Professional & vocational
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание: This monograph presents a selected collection of research work on multi-objective approach to machine learning, including multi-objective feature selection, multi-objective model selection in training multi-layer perceptrons, radial-basis-function networks, support vector machines, decision trees, and intelligent systems.


Machine Learning

Автор: Kevin Murphy
Название: Machine Learning
ISBN: 0262018020 ISBN-13(EAN): 9780262018029
Издательство: MIT Press
Рейтинг:
Цена: 18622.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

A comprehensive introduction to machine learning that uses probabilistic models and inference as a unifying approach.

Today's Web-enabled deluge of electronic data calls for automated methods of data analysis. Machine learning provides these, developing methods that can automatically detect patterns in data and then use the uncovered patterns to predict future data. This textbook offers a comprehensive and self-contained introduction to the field of machine learning, based on a unified, probabilistic approach.

The coverage combines breadth and depth, offering necessary background material on such topics as probability, optimization, and linear algebra as well as discussion of recent developments in the field, including conditional random fields, L1 regularization, and deep learning. The book is written in an informal, accessible style, complete with pseudo-code for the most important algorithms. All topics are copiously illustrated with color images and worked examples drawn from such application domains as biology, text processing, computer vision, and robotics. Rather than providing a cookbook of different heuristic methods, the book stresses a principled model-based approach, often using the language of graphical models to specify models in a concise and intuitive way. Almost all the models described have been implemented in a MATLAB software package -- PMTK (probabilistic modeling toolkit) -- that is freely available online. The book is suitable for upper-level undergraduates with an introductory-level college math background and beginning graduate students.

Practical Machine Learning with H2O

Автор: Darren Cook
Название: Practical Machine Learning with H2O
ISBN: 149196460X ISBN-13(EAN): 9781491964606
Издательство: Wiley
Рейтинг:
Цена: 6334.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This hands-on guide teaches you how to use H20 with only minimal math and theory behind the learning algorithms.

Machine Learning: The New AI

Автор: Alpaydin Ethem
Название: Machine Learning: The New AI
ISBN: 0262529513 ISBN-13(EAN): 9780262529518
Издательство: MIT Press
Рейтинг:
Цена: 2700.00 р.
Наличие на складе: Нет в наличии.

Описание:

A concise overview of machine learning -- computer programs that learn from data -- which underlies applications that include recommendation systems, face recognition, and driverless cars.

Today, machine learning underlies a range of applications we use every day, from product recommendations to voice recognition -- as well as some we don't yet use everyday, including driverless cars. It is the basis of the new approach in computing where we do not write programs but collect data; the idea is to learn the algorithms for the tasks automatically from data. As computing devices grow more ubiquitous, a larger part of our lives and work is recorded digitally, and as "Big Data" has gotten bigger, the theory of machine learning -- the foundation of efforts to process that data into knowledge -- has also advanced. In this book, machine learning expert Ethem Alpaydin offers a concise overview of the subject for the general reader, describing its evolution, explaining important learning algorithms, and presenting example applications.

Alpaydin offers an account of how digital technology advanced from number-crunching mainframes to mobile devices, putting today's machine learning boom in context. He describes the basics of machine learning and some applications; the use of machine learning algorithms for pattern recognition; artificial neural networks inspired by the human brain; algorithms that learn associations between instances, with such applications as customer segmentation and learning recommendations; and reinforcement learning, when an autonomous agent learns act so as to maximize reward and minimize penalty. Alpaydin then considers some future directions for machine learning and the new field of "data science," and discusses the ethical and legal implications for data privacy and security.

Machine Learning for Hackers

Автор: Conway Drew, White John Myles
Название: Machine Learning for Hackers
ISBN: 1449303714 ISBN-13(EAN): 9781449303716
Издательство: Wiley
Рейтинг:
Цена: 6334.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Now that storage and collection technologies are cheaper and more precise, methods for extracting relevant information from large datasets is within the reach any experienced programmer willing to crunch data.

Distributed Artificial Intelligence Meets Machine Learning Learning in Multi-Agent Environments

Автор: Gerhard Wei?
Название: Distributed Artificial Intelligence Meets Machine Learning Learning in Multi-Agent Environments
ISBN: 3540629343 ISBN-13(EAN): 9783540629344
Издательство: Springer
Рейтинг:
Цена: 9781.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This report documents current and ongoing developments in the area of learning in distributed artificial intelligence systems. The interdisciplinary co-operation of researchers from DAI and machine learning has established an active area of research and development.

Machine Learning

Автор: Marsland
Название: Machine Learning
ISBN: 1466583282 ISBN-13(EAN): 9781466583283
Издательство: Taylor&Francis
Рейтинг:
Цена: 12095.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

A Proven, Hands-On Approach for Students without a Strong Statistical Foundation

Since the best-selling first edition was published, there have been several prominent developments in the field of machine learning, including the increasing work on the statistical interpretations of machine learning algorithms. Unfortunately, computer science students without a strong statistical background often find it hard to get started in this area.

Remedying this deficiency, Machine Learning: An Algorithmic Perspective, Second Edition helps students understand the algorithms of machine learning. It puts them on a path toward mastering the relevant mathematics and statistics as well as the necessary programming and experimentation.

New to the Second Edition

  • Two new chapters on deep belief networks and Gaussian processes
  • Reorganization of the chapters to make a more natural flow of content
  • Revision of the support vector machine material, including a simple implementation for experiments
  • New material on random forests, the perceptron convergence theorem, accuracy methods, and conjugate gradient optimization for the multi-layer perceptron
  • Additional discussions of the Kalman and particle filters
  • Improved code, including better use of naming conventions in Python

Suitable for both an introductory one-semester course and more advanced courses, the text strongly encourages students to practice with the code. Each chapter includes detailed examples along with further reading and problems. All of the code used to create the examples is available on the author's website.

Quantum Machine Learning: What Quantum Computing Means to Data Mining

Автор: Wittek Peter
Название: Quantum Machine Learning: What Quantum Computing Means to Data Mining
ISBN: 0128100400 ISBN-13(EAN): 9780128100400
Издательство: Elsevier Science
Рейтинг:
Цена: 11789.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Quantum Machine Learning bridges the gap between abstract developments in quantum computing and the applied research on machine learning. Paring down the complexity of the disciplines involved, it focuses on providing a synthesis that explains the most important machine learning algorithms in a quantum framework. Theoretical advances in quantum computing are hard to follow for computer scientists, and sometimes even for researchers involved in the field. The lack of a step-by-step guide hampers the broader understanding of this emergent interdisciplinary body of research. . Quantum Machine Learning sets the scene for a deeper understanding of the subject for readers of different backgrounds. The author has carefully constructed a clear comparison of classical learning algorithms and their quantum counterparts, thus making differences in computational complexity and learning performance apparent. This book synthesizes of a broad array of research into a manageable and concise presentation, with practical examples and applications.

Multi-Agent Machine Learning

Автор: Schwartz H M
Название: Multi-Agent Machine Learning
ISBN: 111836208X ISBN-13(EAN): 9781118362082
Издательство: Wiley
Рейтинг:
Цена: 15198.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The book begins with a chapter on traditional methods of supervised learning, covering recursive least squares learning, mean square error methods, and stochastic approximation. Chapter 2 covers single agent reinforcement learning. Topics include learning value functions, Markov games, and TD learning with eligibility traces.

Fundamentals of Machine Learning for Predictive Data Analytics: Algorithms, Worked Examples, and Case Studies

Автор: Kelleher John D., Macnamee Brian, D`Arcy Aoife
Название: Fundamentals of Machine Learning for Predictive Data Analytics: Algorithms, Worked Examples, and Case Studies
ISBN: 0262029448 ISBN-13(EAN): 9780262029445
Издательство: MIT Press
Рейтинг:
Цена: 13543.00 р.
Наличие на складе: Нет в наличии.

Описание:

A comprehensive introduction to the most important machine learning approaches used in predictive data analytics, covering both theoretical concepts and practical applications.

Machine learning is often used to build predictive models by extracting patterns from large datasets. These models are used in predictive data analytics applications including price prediction, risk assessment, predicting customer behavior, and document classification. This introductory textbook offers a detailed and focused treatment of the most important machine learning approaches used in predictive data analytics, covering both theoretical concepts and practical applications. Technical and mathematical material is augmented with explanatory worked examples, and case studies illustrate the application of these models in the broader business context.

After discussing the trajectory from data to insight to decision, the book describes four approaches to machine learning: information-based learning, similarity-based learning, probability-based learning, and error-based learning. Each of these approaches is introduced by a nontechnical explanation of the underlying concept, followed by mathematical models and algorithms illustrated by detailed worked examples. Finally, the book considers techniques for evaluating prediction models and offers two case studies that describe specific data analytics projects through each phase of development, from formulating the business problem to implementation of the analytics solution. The book, informed by the authors' many years of teaching machine learning, and working on predictive data analytics projects, is suitable for use by undergraduates in computer science, engineering, mathematics, or statistics; by graduate students in disciplines with applications for predictive data analytics; and as a reference for professionals.

Bayesian Reasoning and Machine Learning

Автор: Barber
Название: Bayesian Reasoning and Machine Learning
ISBN: 0521518148 ISBN-13(EAN): 9780521518147
Издательство: Cambridge Academ
Рейтинг:
Цена: 11088.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This practical introduction for final-year undergraduate and graduate students is ideally suited to computer scientists without a background in calculus and linear algebra. Numerous examples and exercises are provided. Additional resources available online and in the comprehensive software package include computer code, demos and teaching materials for instructors.

Data Mining: Practical Machine Learning Tools and Techniques,

Автор: Ian H. Witten
Название: Data Mining: Practical Machine Learning Tools and Techniques,
ISBN: 0123748569 ISBN-13(EAN): 9780123748560
Издательство: Elsevier Science
Рейтинг:
Цена: 8695.00 р.
Наличие на складе: Поставка под заказ.

Описание: Like the popular second edition, Data Mining: Practical Machine Learning Tools and Techniques offers a thorough grounding in machine learning concepts as well as practical advice on applying machine learning tools and techniques in real-world data mining situations. Inside, you'll learn all you need to know about preparing inputs, interpreting outputs, evaluating results, and the algorithmic methods at the heart of successful data mining?including both tried-and-true techniques of today as well as methods at the leading edge of contemporary research. <br><br>Complementing the book is a fully functional platform-independent open source Weka software for machine learning, available for free download. <br><br>The book is a major revision of the second edition that appeared in 2005. While the basic core remains the same, it has been updated to reflect the changes that have taken place over the last four or five years. The highlights for the updated new edition include completely revised technique sections; new chapter on Data Transformations, new chapter on Ensemble Learning, new chapter on Massive Data Sets, a new ?book release? version of the popular Weka machine learning open source software (developed by the authors and specific to the Third Edition); new material on ?multi-instance learning?; new information on ranking the classification, plus comprehensive updates and modernization throughout. All in all, approximately 100 pages of new material.<br> <br><br>* Thorough grounding in machine learning concepts as well as practical advice on applying the tools and techniques<br><br>* Algorithmic methods at the heart of successful data mining?including tired and true methods as well as leading edge methods<br><br>* Performance improvement techniques that work by transforming the input or output<br><br>* Downloadable Weka, a collection of machine learning algorithms for data mining tasks, including tools for data pre-processing, classification, regression, clustering, association rules, and visualization?in an updated, interactive interface. <br>

Machine Learning

Автор: Mitchell
Название: Machine Learning
ISBN: 0071154671 ISBN-13(EAN): 9780071154673
Издательство: McGraw-Hill
Рейтинг:
Цена: 10466.00 р.
Наличие на складе: Поставка под заказ.

Описание: Covers the field of machine learning, which is the study of algorithms that allow computer programs to automatically improve through experience. This book is intended to support upper level undergraduate and introductory level graduate courses in machine learning.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия