Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Preserving Privacy in On-Line Analytical Processing (OLAP), Lingyu Wang; Sushil Jajodia; Duminda Wijesekera


Варианты приобретения
Цена: 18167.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Lingyu Wang; Sushil Jajodia; Duminda Wijesekera
Название:  Preserving Privacy in On-Line Analytical Processing (OLAP)
ISBN: 9781441942784
Издательство: Springer
Классификация: ISBN-10: 1441942785
Обложка/Формат: Paperback
Страницы: 192
Вес: 0.28 кг.
Дата издания: 2006
Серия: Advances in Information Security
Язык: English
Размер: 234 x 156 x 10
Читательская аудитория: Professionals
Ссылка на Издательство: Link
Поставляется из: Германии
Описание:

Preserving Privacy for On-Line Analytical Processing addresses the privacy issue of On-Line Analytic Processing (OLAP) systems. OLAP systems usually need to meet two conflicting goals. First, the sensitive data stored in underlying data warehouses must be kept secret. Second, analytical queries about the data must be allowed for decision support purposes. The main challenge is that sensitive data can be inferred from answers to seemingly innocent aggregations of the data. This volume reviews a series of methods that can precisely answer data cube-style OLAP, regarding sensitive data while provably preventing adversaries from inferring data.

Preserving Privacy for On-Line Analytical Processing is appropriate for practitioners in industry as well as graduate-level students in computer science and engineering.




Preserving Privacy Against Side-Channel Leaks

Автор: Liu
Название: Preserving Privacy Against Side-Channel Leaks
ISBN: 3319426427 ISBN-13(EAN): 9783319426426
Издательство: Springer
Рейтинг:
Цена: 10760.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

This book offers a novel approach to data privacy by unifying side-channel attacks within a general conceptual framework. This book then applies the framework in three concrete domains.
First, the book examines privacy-preserving data publishing with publicly-known algorithms, studying a generic strategy independent of data utility measures and syntactic privacy properties before discussing an extended approach to improve the efficiency. Next, the book explores privacy-preserving traffic padding in Web applications, first via a model to quantify privacy and cost and then by introducing randomness to provide background knowledge-resistant privacy guarantee. Finally, the book considers privacy-preserving smart metering by proposing a light-weight approach to simultaneously preserving users' privacy and ensuring billing accuracy.
Designed for researchers and professionals, this book is also suitable for advanced-level students interested in privacy, algorithms, or web applications.
Privacy-Preserving Data Mining

Автор: Charu C. Aggarwal; Philip S. Yu
Название: Privacy-Preserving Data Mining
ISBN: 1441943714 ISBN-13(EAN): 9781441943712
Издательство: Springer
Рейтинг:
Цена: 27251.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book proposes a number of techniques to perform data mining tasks in a privacy-preserving way. The survey information included with each chapter is unique in terms of its focus on introducing the different topics more comprehensively.

Preserving Privacy in Data Outsourcing

Автор: Sara Foresti
Название: Preserving Privacy in Data Outsourcing
ISBN: 1461426995 ISBN-13(EAN): 9781461426998
Издательство: Springer
Цена: 16070.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

Foreword by Pierangela Samarati

Privacy requirements have an increasing impact on the realization of modern applications. Commercial and legal regulations demand that privacy guarantees be provided whenever sensitive information is stored, processed, or communicated to external parties. Current approaches encrypt sensitive data, thus reducing query execution efficiency and preventing selective information release.

Preserving Privacy in Data Outsourcing presents a comprehensive approach for protecting highly sensitive information when it is stored on systems that are not under the data owner's control. The approach illustrated combines access control and encryption, enforcing access control via structured encryption. This solution, coupled with efficient algorithms for key derivation and distribution, provides efficient and secure authorization management on outsourced data; it allows the data owner to outsource not only the data but the security policy itself. The last section of this book investigates the problem of executing queries over possible data distributed at different servers. Case Studies will be provided.

About this book:

Exclusively focuses on addressing protection of confidential information in the emerging data outsourcing scenarios.

Presents relevant and critical novel problems and novel techniques, a precious reference point to students, researchers, and developers in this field.

Provides a comprehensive overview of the data protection problem in outsourcing scenarios, as well as a rigorous analysis and formalization of the problem and solutions to it.

Privacy, data mining, data protection, data outsourcing, electronic commerce, machine learning professionals and others working in these related fields will find this book a valuable asset, as well as primary associations such as ACM, IEEE and Management Science. This book is also suitable for advanced level students and researchers concentrating on computer science as a secondary text or reference book.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия