Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Privacy-Preserving Data Mining, Charu C. Aggarwal; Philip S. Yu


Варианты приобретения
Цена: 27251.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Charu C. Aggarwal; Philip S. Yu
Название:  Privacy-Preserving Data Mining
ISBN: 9781441943712
Издательство: Springer
Классификация:





ISBN-10: 1441943714
Обложка/Формат: Paperback
Страницы: 535
Вес: 0.76 кг.
Дата издания: 2008
Серия: Advances in Database Systems
Язык: English
Издание: Softcover reprint of
Иллюстрации: Biography
Размер: 231 x 157 x 31
Читательская аудитория: Professional & vocational
Подзаголовок: Models and algorithms
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание: This book proposes a number of techniques to perform data mining tasks in a privacy-preserving way. The survey information included with each chapter is unique in terms of its focus on introducing the different topics more comprehensively.


Data Science For Business: What You Need To Know About Data Mining And Dataanalytic Thinking

Автор: Foster Provost
Название: Data Science For Business: What You Need To Know About Data Mining And Dataanalytic Thinking
ISBN: 1449361323 ISBN-13(EAN): 9781449361327
Издательство: Wiley
Рейтинг:
Цена: 6334.00 р.
Наличие на складе: Есть (1 шт.)
Описание: This broad, deep, but not-too-technical guide introduces you to the fundamental principles of data science and walks you through the "data-analytic thinking" necessary for extracting useful knowledge and business value from the data you collect.

Preserving Privacy Against Side-Channel Leaks

Автор: Liu
Название: Preserving Privacy Against Side-Channel Leaks
ISBN: 3319426427 ISBN-13(EAN): 9783319426426
Издательство: Springer
Рейтинг:
Цена: 10760.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

This book offers a novel approach to data privacy by unifying side-channel attacks within a general conceptual framework. This book then applies the framework in three concrete domains.
First, the book examines privacy-preserving data publishing with publicly-known algorithms, studying a generic strategy independent of data utility measures and syntactic privacy properties before discussing an extended approach to improve the efficiency. Next, the book explores privacy-preserving traffic padding in Web applications, first via a model to quantify privacy and cost and then by introducing randomness to provide background knowledge-resistant privacy guarantee. Finally, the book considers privacy-preserving smart metering by proposing a light-weight approach to simultaneously preserving users' privacy and ensuring billing accuracy.
Designed for researchers and professionals, this book is also suitable for advanced-level students interested in privacy, algorithms, or web applications.
Data Mining: Practical Machine Learning Tools and Techniques,

Автор: Ian H. Witten
Название: Data Mining: Practical Machine Learning Tools and Techniques,
ISBN: 0123748569 ISBN-13(EAN): 9780123748560
Издательство: Elsevier Science
Рейтинг:
Цена: 8695.00 р.
Наличие на складе: Поставка под заказ.

Описание: Like the popular second edition, Data Mining: Practical Machine Learning Tools and Techniques offers a thorough grounding in machine learning concepts as well as practical advice on applying machine learning tools and techniques in real-world data mining situations. Inside, you'll learn all you need to know about preparing inputs, interpreting outputs, evaluating results, and the algorithmic methods at the heart of successful data mining?including both tried-and-true techniques of today as well as methods at the leading edge of contemporary research. <br><br>Complementing the book is a fully functional platform-independent open source Weka software for machine learning, available for free download. <br><br>The book is a major revision of the second edition that appeared in 2005. While the basic core remains the same, it has been updated to reflect the changes that have taken place over the last four or five years. The highlights for the updated new edition include completely revised technique sections; new chapter on Data Transformations, new chapter on Ensemble Learning, new chapter on Massive Data Sets, a new ?book release? version of the popular Weka machine learning open source software (developed by the authors and specific to the Third Edition); new material on ?multi-instance learning?; new information on ranking the classification, plus comprehensive updates and modernization throughout. All in all, approximately 100 pages of new material.<br> <br><br>* Thorough grounding in machine learning concepts as well as practical advice on applying the tools and techniques<br><br>* Algorithmic methods at the heart of successful data mining?including tired and true methods as well as leading edge methods<br><br>* Performance improvement techniques that work by transforming the input or output<br><br>* Downloadable Weka, a collection of machine learning algorithms for data mining tasks, including tools for data pre-processing, classification, regression, clustering, association rules, and visualization?in an updated, interactive interface. <br>

Matrix Methods in Data Mining and Pattern Recognition

Автор: Lars Eld?n
Название: Matrix Methods in Data Mining and Pattern Recognition
ISBN: 0898716268 ISBN-13(EAN): 9780898716269
Издательство: Cambridge Academ
Рейтинг:
Цена: 9029.00 р.
Наличие на складе: Поставка под заказ.

Описание: Several very powerful numerical linear algebra techniques are available for solving problems in data mining and pattern recognition. This application-oriented book describes how modern matrix methods can be used to solve these problems, gives an introduction to matrix theory and decompositions, and provides students with a set of tools that can be modified for a particular application. Part I gives a short introduction to a few application areas before presenting linear algebra concepts and matrix decompositions that students can use in problem-solving environments such as MATLAB. In Part II, linear algebra techniques are applied to data mining problems. Part III is a brief introduction to eigenvalue and singular value algorithms. The applications discussed include classification of handwritten digits, text mining, text summarization, pagerank computations related to the Google search engine, and face recognition. Exercises and computer assignments are available on a Web page that supplements the book.

Data Mining with R

Автор: Torgo
Название: Data Mining with R
ISBN: 1439810184 ISBN-13(EAN): 9781439810187
Издательство: Taylor&Francis
Рейтинг:
Цена: 9951.00 р.
Наличие на складе: Поставка под заказ.

Описание: This hands-on book uses practical examples to illustrate the power of R and data mining. Assuming no prior knowledge of R or data mining/statistical techniques, it covers a diverse set of problems that pose different challenges in terms of size, type of data, goals of analysis, and analytical tools. The main data mining processes and techniques are presented through detailed, real-world case studies. With these case studies, the author supplies all necessary steps, code, and data. Mirroring the do-it-yourself approach of the text, the supporting website provides data sets and R code.

Data Mining. Practical Machine Learning Tools and Techniques, 4 ed.

Автор: Witten, Ian H.
Название: Data Mining. Practical Machine Learning Tools and Techniques, 4 ed.
ISBN: 0128042915 ISBN-13(EAN): 9780128042915
Издательство: Elsevier Science
Рейтинг:
Цена: 9262.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

Data Mining: Practical Machine Learning Tools and Techniques, Fourth Edition, offers a thorough grounding in machine learning concepts, along with practical advice on applying these tools and techniques in real-world data mining situations. This highly anticipated fourth edition of the most acclaimed work on data mining and machine learning teaches readers everything they need to know to get going, from preparing inputs, interpreting outputs, evaluating results, to the algorithmic methods at the heart of successful data mining approaches.

Extensive updates reflect the technical changes and modernizations that have taken place in the field since the last edition, including substantial new chapters on probabilistic methods and on deep learning. Accompanying the book is a new version of the popular WEKA machine learning software from the University of Waikato. Authors Witten, Frank, Hall, and Pal include today's techniques coupled with the methods at the leading edge of contemporary research.

Please visit the book companion website at https: //www.cs.waikato.ac.nz/ ml/weka/book.html.

It contains

  • Powerpoint slides for Chapters 1-12. This is a very comprehensive teaching resource, with many PPT slides covering each chapter of the book
  • Online Appendix on the Weka workbench; again a very comprehensive learning aid for the open source software that goes with the book
  • Table of contents, highlighting the many new sections in the 4th edition, along with reviews of the 1st edition, errata, etc.

  • Provides a thorough grounding in machine learning concepts, as well as practical advice on applying the tools and techniques to data mining projects
  • Presents concrete tips and techniques for performance improvement that work by transforming the input or output in machine learning methods
  • Includes a downloadable WEKA software toolkit, a comprehensive collection of machine learning algorithms for data mining tasks-in an easy-to-use interactive interface
  • Includes open-access online courses that introduce practical applications of the material in the book
Security, Privacy, and Trust in Modern Data Management

Автор: Milan Petkovic; Willem Jonker
Название: Security, Privacy, and Trust in Modern Data Management
ISBN: 3642089267 ISBN-13(EAN): 9783642089268
Издательство: Springer
Рейтинг:
Цена: 19564.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The vision of ubiquitous computing and ambient intelligence describes a world of technology which is present anywhere, anytime in the form of smart, sensible devices that communicate with each other and provide personalized services.

Data Privacy Management and Autonomous Spontaneous Security

Автор: Joaquin Garcia-Alfaro; Guillermo Navarro-Arribas;
Название: Data Privacy Management and Autonomous Spontaneous Security
ISBN: 3642112064 ISBN-13(EAN): 9783642112065
Издательство: Springer
Рейтинг:
Цена: 9781.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: 4th International Workshop DPM 2009 and Second International Workshop SETOP 2009 St Malo France Sep. .

Data and Applications Security and Privacy XXX

Автор: Ranise
Название: Data and Applications Security and Privacy XXX
ISBN: 3319414828 ISBN-13(EAN): 9783319414829
Издательство: Springer
Рейтинг:
Цена: 10482.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book constitutes the refereed proceedings of the 30th Annual IFIP WG 11.3 International Working Conference on Data and Applications Security and Privacy, DBSec 2016, held in trento, Itlay, in July 2016.

Statistical and Machine-Learning Data Mining

Автор: Ratner Bruce
Название: Statistical and Machine-Learning Data Mining
ISBN: 1439860912 ISBN-13(EAN): 9781439860915
Издательство: Taylor&Francis
Рейтинг:
Цена: 9033.00 р.
Наличие на складе: Поставка под заказ.

Описание: Rev. ed. of: Statistical modeling and analysis for database marketing. c2003.

Developing Churn Models Using Data Mining Techniques And Social Network Analysis

Автор: Klepac, Kopal & Mrsic
Название: Developing Churn Models Using Data Mining Techniques And Social Network Analysis
ISBN: 1466662883 ISBN-13(EAN): 9781466662889
Издательство: Mare Nostrum (Eurospan)
Рейтинг:
Цена: 27027.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Churn prediction, recognition, and mitigation have become essential topics in various industries. As a means for forecasting and manageing risk, further research in this field can greatly assist companies in making informed decisions based on future possible scenarios.Developing Churn Models Using Data Mining Techniques and Social Network Analysis provides an in-depth analysis of attrition modeling relevant to business planning and management. Through its insightful and detailed explanation of best practices, tools, and theory surrounding churn prediction and the integration of analytics tools, this publication is especially relevant to managers, data specialists, business analysts, academicians, and upper-level students.

Data Mining: Concepts and Techniques,

Автор: Jiawei Han
Название: Data Mining: Concepts and Techniques,
ISBN: 0123814790 ISBN-13(EAN): 9780123814791
Издательство: Elsevier Science
Рейтинг:
Цена: 9720.00 р.
Наличие на складе: Поставка под заказ.

Описание: Data Mining: Concepts and Techniques provides the concepts and techniques in processing gathered data or information, which will be used in various applications. Specifically, it explains data mining and the tools used in discovering knowledge from the collected data. This book is referred as the knowledge discovery from data (KDD). It focuses on the feasibility, usefulness, effectiveness, and scalability of techniques of large data sets. After describing data mining, this edition explains the methods of knowing, preprocessing, processing, and warehousing data. It then presents information about data warehouses, online analytical processing (OLAP), and data cube technology. Then, the methods involved in mining frequent patterns, associations, and correlations for large data sets are described. The book details the methods for data classification and introduces the concepts and methods for data clustering. The remaining chapters discuss the outlier detection and the trends, applications, and research frontiers in data mining. This book is intended for Computer Science students, application developers, business professionals, and researchers who seek information on data mining.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия