Machine Learning and Data Mining in Pattern Recognition, Petra Perner
Автор: Ratner Bruce Название: Statistical and Machine-Learning Data Mining ISBN: 1439860912 ISBN-13(EAN): 9781439860915 Издательство: Taylor&Francis Рейтинг: Цена: 9033.00 р. Наличие на складе: Поставка под заказ.
Описание: Rev. ed. of: Statistical modeling and analysis for database marketing. c2003.
Автор: Lars Eld?n Название: Matrix Methods in Data Mining and Pattern Recognition ISBN: 0898716268 ISBN-13(EAN): 9780898716269 Издательство: Cambridge Academ Рейтинг: Цена: 9029.00 р. Наличие на складе: Поставка под заказ.
Описание: Several very powerful numerical linear algebra techniques are available for solving problems in data mining and pattern recognition. This application-oriented book describes how modern matrix methods can be used to solve these problems, gives an introduction to matrix theory and decompositions, and provides students with a set of tools that can be modified for a particular application. Part I gives a short introduction to a few application areas before presenting linear algebra concepts and matrix decompositions that students can use in problem-solving environments such as MATLAB. In Part II, linear algebra techniques are applied to data mining problems. Part III is a brief introduction to eigenvalue and singular value algorithms. The applications discussed include classification of handwritten digits, text mining, text summarization, pagerank computations related to the Google search engine, and face recognition. Exercises and computer assignments are available on a Web page that supplements the book.
Автор: Sameer Singh; Maneesha Singh; Chid Apte; Petra Per Название: Pattern Recognition and Data Mining ISBN: 3540287574 ISBN-13(EAN): 9783540287575 Издательство: Springer Рейтинг: Цена: 16769.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Constitutes the refereed proceedings of the Third International Conference on Advances in Pattern Recognition, ICAPR 2005, held in Bath, UK in August 2005.
Автор: Clarke Название: Principles and Theory for Data Mining and Machine Learning ISBN: 0387981349 ISBN-13(EAN): 9780387981345 Издательство: Springer Рейтинг: Цена: 27950.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Extensive treatment of the most up-to-date topicsProvides the theory and concepts behind popular and emerging methodsRange of topics drawn from Statistics, Computer Science, and Electrical Engineering
Автор: Perner Название: Machine Learning and Data Mining in Pattern Recognition ISBN: 3319419196 ISBN-13(EAN): 9783319419190 Издательство: Springer Рейтинг: Цена: 13416.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The topics range from theoretical topics for classification, clustering, association rule and pattern mining to specific data mining methods for the different multimedia data types such as image mining, text mining, video mining and Web mining.
Описание: Like the popular second edition, Data Mining: Practical Machine Learning Tools and Techniques offers a thorough grounding in machine learning concepts as well as practical advice on applying machine learning tools and techniques in real-world data mining situations. Inside, you'll learn all you need to know about preparing inputs, interpreting outputs, evaluating results, and the algorithmic methods at the heart of successful data mining?including both tried-and-true techniques of today as well as methods at the leading edge of contemporary research. <br><br>Complementing the book is a fully functional platform-independent open source Weka software for machine learning, available for free download. <br><br>The book is a major revision of the second edition that appeared in 2005. While the basic core remains the same, it has been updated to reflect the changes that have taken place over the last four or five years. The highlights for the updated new edition include completely revised technique sections; new chapter on Data Transformations, new chapter on Ensemble Learning, new chapter on Massive Data Sets, a new ?book release? version of the popular Weka machine learning open source software (developed by the authors and specific to the Third Edition); new material on ?multi-instance learning?; new information on ranking the classification, plus comprehensive updates and modernization throughout. All in all, approximately 100 pages of new material.<br> <br><br>* Thorough grounding in machine learning concepts as well as practical advice on applying the tools and techniques<br><br>* Algorithmic methods at the heart of successful data mining?including tired and true methods as well as leading edge methods<br><br>* Performance improvement techniques that work by transforming the input or output<br><br>* Downloadable Weka, a collection of machine learning algorithms for data mining tasks, including tools for data pre-processing, classification, regression, clustering, association rules, and visualization?in an updated, interactive interface. <br>
Data Mining: Practical Machine Learning Tools and Techniques, Fourth Edition, offers a thorough grounding in machine learning concepts, along with practical advice on applying these tools and techniques in real-world data mining situations. This highly anticipated fourth edition of the most acclaimed work on data mining and machine learning teaches readers everything they need to know to get going, from preparing inputs, interpreting outputs, evaluating results, to the algorithmic methods at the heart of successful data mining approaches.
Extensive updates reflect the technical changes and modernizations that have taken place in the field since the last edition, including substantial new chapters on probabilistic methods and on deep learning. Accompanying the book is a new version of the popular WEKA machine learning software from the University of Waikato. Authors Witten, Frank, Hall, and Pal include today's techniques coupled with the methods at the leading edge of contemporary research.
Please visit the book companion website at https: //www.cs.waikato.ac.nz/ ml/weka/book.html.
It contains
Powerpoint slides for Chapters 1-12. This is a very comprehensive teaching resource, with many PPT slides covering each chapter of the book
Online Appendix on the Weka workbench; again a very comprehensive learning aid for the open source software that goes with the book
Table of contents, highlighting the many new sections in the 4th edition, along with reviews of the 1st edition, errata, etc.
Provides a thorough grounding in machine learning concepts, as well as practical advice on applying the tools and techniques to data mining projects
Presents concrete tips and techniques for performance improvement that work by transforming the input or output in machine learning methods
Includes a downloadable WEKA software toolkit, a comprehensive collection of machine learning algorithms for data mining tasks-in an easy-to-use interactive interface
Includes open-access online courses that introduce practical applications of the material in the book
Автор: Bertrand Clarke; Ernest Fokoue; Hao Helen Zhang Название: Principles and Theory for Data Mining and Machine Learning ISBN: 1461417074 ISBN-13(EAN): 9781461417071 Издательство: Springer Рейтинг: Цена: 21661.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book provides a thorough introduction to the most important topics in data mining and machine learning. All the topics covered have undergone rapid development and this treatment offers a modern perspective emphasizing the most recent contributions.
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru