Machine Learning and Data Mining in Pattern Recognition, Perner
Автор: Ratner Bruce Название: Statistical and Machine-Learning Data Mining ISBN: 1439860912 ISBN-13(EAN): 9781439860915 Издательство: Taylor&Francis Рейтинг: Цена: 9033.00 р. Наличие на складе: Поставка под заказ.
Описание: Rev. ed. of: Statistical modeling and analysis for database marketing. c2003.
Автор: Lars Eld?n Название: Matrix Methods in Data Mining and Pattern Recognition ISBN: 0898716268 ISBN-13(EAN): 9780898716269 Издательство: Cambridge Academ Рейтинг: Цена: 9029.00 р. Наличие на складе: Поставка под заказ.
Описание: Several very powerful numerical linear algebra techniques are available for solving problems in data mining and pattern recognition. This application-oriented book describes how modern matrix methods can be used to solve these problems, gives an introduction to matrix theory and decompositions, and provides students with a set of tools that can be modified for a particular application. Part I gives a short introduction to a few application areas before presenting linear algebra concepts and matrix decompositions that students can use in problem-solving environments such as MATLAB. In Part II, linear algebra techniques are applied to data mining problems. Part III is a brief introduction to eigenvalue and singular value algorithms. The applications discussed include classification of handwritten digits, text mining, text summarization, pagerank computations related to the Google search engine, and face recognition. Exercises and computer assignments are available on a Web page that supplements the book.
Автор: Kumar Название: Correlation Pattern Recognition ISBN: 0521153484 ISBN-13(EAN): 9780521153485 Издательство: Cambridge Academ Рейтинг: Цена: 8554.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book provides a needed review of the diverse background material needed for correlation pattern recognition, developing the signal processing theory, the pattern recognition metrics, and the practical application know-how from basic premises. Includes case studies of interest, such as face and fingerprint recognition. For graduate students and practitioners.
Автор: Bishop, Christopher M. Название: Neural Networks for Pattern Recognition ISBN: 0198538642 ISBN-13(EAN): 9780198538646 Издательство: Oxford Academ Рейтинг: Цена: 13939.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book is the first to provide a comprehensive account of neural networks from a statistical perspective. Its emphasis is on pattern recognition, which currently represents the area of greatest applicability for neural networks. By focusing on pattern recognition, the book provides a much more extensive treatment of many topics than is available in earlier books.
Автор: Brian D. Ripley Название: Pattern Recognition and Neural Networks ISBN: 0521717701 ISBN-13(EAN): 9780521717700 Издательство: Cambridge Academ Рейтинг: Цена: 7762.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This 1996 book is a reliable account of the statistical framework for pattern recognition and machine learning. Valuable advice is included on both theory and applications, while case studies based on real data sets help readers develop their understanding. All data sets are available from www.stats.ox.ac.uk/~ripley/PRbook/
Автор: Sergios Theodoridis Название: Pattern Recognition, ISBN: 1597492728 ISBN-13(EAN): 9781597492720 Издательство: Elsevier Science Рейтинг: Цена: 14483.00 р. Наличие на складе: Поставка под заказ.
Описание: Considers classical and theory and practice, of supervised, unsupervised and semi-supervised pattern recognition, to build a complete background for professionals and students of engineering. This book provides an self-contained volume encapsulating this spectrum of information.
Автор: Sergios Theodoridis Название: Introduction to Pattern Recognition: A Matlab Approach, ISBN: 0123744865 ISBN-13(EAN): 9780123744869 Издательство: Elsevier Science Рейтинг: Цена: 5557.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: An accompanying manual to "Theodoridis/Koutroumbas, Pattern Recognition", that includes Matlab code of the most common methods and algorithms in the book, together with a descriptive summary and solved examples, and including real-life data sets in imaging and audio recognition.
Автор: Petra Perner Название: Machine Learning and Data Mining in Pattern Recognition ISBN: 3642030696 ISBN-13(EAN): 9783642030697 Издательство: Springer Рейтинг: Цена: 18167.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: 6th International Conference MLDM 2009 Leipzig Germany July 2325 2009 Proceedings. .
Автор: Sameer Singh; Maneesha Singh; Chid Apte; Petra Per Название: Pattern Recognition and Data Mining ISBN: 3540287574 ISBN-13(EAN): 9783540287575 Издательство: Springer Рейтинг: Цена: 16769.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Constitutes the refereed proceedings of the Third International Conference on Advances in Pattern Recognition, ICAPR 2005, held in Bath, UK in August 2005.
Описание: Like the popular second edition, Data Mining: Practical Machine Learning Tools and Techniques offers a thorough grounding in machine learning concepts as well as practical advice on applying machine learning tools and techniques in real-world data mining situations. Inside, you'll learn all you need to know about preparing inputs, interpreting outputs, evaluating results, and the algorithmic methods at the heart of successful data mining?including both tried-and-true techniques of today as well as methods at the leading edge of contemporary research. <br><br>Complementing the book is a fully functional platform-independent open source Weka software for machine learning, available for free download. <br><br>The book is a major revision of the second edition that appeared in 2005. While the basic core remains the same, it has been updated to reflect the changes that have taken place over the last four or five years. The highlights for the updated new edition include completely revised technique sections; new chapter on Data Transformations, new chapter on Ensemble Learning, new chapter on Massive Data Sets, a new ?book release? version of the popular Weka machine learning open source software (developed by the authors and specific to the Third Edition); new material on ?multi-instance learning?; new information on ranking the classification, plus comprehensive updates and modernization throughout. All in all, approximately 100 pages of new material.<br> <br><br>* Thorough grounding in machine learning concepts as well as practical advice on applying the tools and techniques<br><br>* Algorithmic methods at the heart of successful data mining?including tired and true methods as well as leading edge methods<br><br>* Performance improvement techniques that work by transforming the input or output<br><br>* Downloadable Weka, a collection of machine learning algorithms for data mining tasks, including tools for data pre-processing, classification, regression, clustering, association rules, and visualization?in an updated, interactive interface. <br>
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru