Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Reinforcement Learning, Marco Wiering; Martijn van Otterlo


Варианты приобретения
Цена: 32651.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Marco Wiering; Martijn van Otterlo
Название:  Reinforcement Learning
ISBN: 9783642446856
Издательство: Springer
Классификация:
ISBN-10: 364244685X
Обложка/Формат: Paperback
Страницы: 638
Вес: 1.02 кг.
Дата издания: 2012
Серия: Adaptation, Learning, and Optimization
Язык: English
Издание: 2012 ed.
Иллюстрации: Xxxiv, 638 p.
Размер: 156 x 232 x 40
Читательская аудитория: Professional & vocational
Подзаголовок: State-of-the-art
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание: This book presents up-to-date information on the main contemporary sub-fields of reinforcement learning, including partially observable environments, hierarchical task decompositions, relational knowledge representation and predictive state representations.


Statistical Reinforcement Learning

Автор: Sugiyama
Название: Statistical Reinforcement Learning
ISBN: 1439856893 ISBN-13(EAN): 9781439856895
Издательство: Taylor&Francis
Рейтинг:
Цена: 13014.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

Reinforcement learning is a mathematical framework for developing computer agents that can learn an optimal behavior by relating generic reward signals with its past actions. With numerous successful applications in business intelligence, plant control, and gaming, the RL framework is ideal for decision making in unknown environments with large amounts of data.

Supplying an up-to-date and accessible introduction to the field, Statistical Reinforcement Learning: Modern Machine Learning Approaches presents fundamental concepts and practical algorithms of statistical reinforcement learning from the modern machine learning viewpoint. It covers various types of RL approaches, including model-based and model-free approaches, policy iteration, and policy search methods.

  • Covers the range of reinforcement learning algorithms from a modern perspective
  • Lays out the associated optimization problems for each reinforcement learning scenario covered
  • Provides thought-provoking statistical treatment of reinforcement learning algorithms

The book covers approaches recently introduced in the data mining and machine learning fields to provide a systematic bridge between RL and data mining/machine learning researchers. It presents state-of-the-art results, including dimensionality reduction in RL and risk-sensitive RL. Numerous illustrative examples are included to help readers understand the intuition and usefulness of reinforcement learning techniques.

This book is an ideal resource for graduate-level students in computer science and applied statistics programs, as well as researchers and engineers in related fields.

Reinforcement Learning for Adaptive Dialogue Systems

Автор: Rieser, Verena
Название: Reinforcement Learning for Adaptive Dialogue Systems
ISBN: 3642249418 ISBN-13(EAN): 9783642249419
Издательство: Springer
Рейтинг:
Цена: 16769.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The past decade has seen a revolution in the field of spoken dialogue systems. As in other areas of Computer Science and Artificial Intelligence, data-driven methods are now being used to drive new methodologies for system development and evaluation. This book is a unique contribution to that ongoing change. A new  methodology for developing spoken dialogue systems is described in detail. The journey starts and ends with human behaviour in interaction, and explores methods for learning from the data, for building simulation environments for training and testing systems, and for evaluating the results. The detailed material covers: Spoken and Multimodal dialogue systems, Wizard-of-Oz data collection, User Simulation methods, Reinforcement Learning, and Evaluation methodologies. The book is a research guide for students and researchers with a background in Computer Science, AI, or Machine Learning. It navigates through a detailed case study in data-driven methods for development and evaluation of spoken dialogue systems. Common challenges associated with this approach are discussed and example solutions are provided. This work provides insights, lessons, and inspiration for future research and development – not only for spoken dialogue systems in particular, but for data-driven approaches to human-machine interaction in general.

Adaptive Representations for Reinforcement Learning

Автор: Shimon Whiteson
Название: Adaptive Representations for Reinforcement Learning
ISBN: 3642422314 ISBN-13(EAN): 9783642422317
Издательство: Springer
Рейтинг:
Цена: 15672.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Presenting the main results of new algorithms for reinforcement learning, this book also introduces a novel method for devising input representations as well as presenting a way to find a minimal set of features sufficient to describe the agent`s current state.

Reinforcement Learning for Adaptive Dialogue Systems

Автор: Verena Rieser; Oliver Lemon
Название: Reinforcement Learning for Adaptive Dialogue Systems
ISBN: 3642439845 ISBN-13(EAN): 9783642439841
Издательство: Springer
Рейтинг:
Цена: 18167.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book contributes to progress in spoken dialogue systems with a new, data-driven methodology. Covers Spoken and Multimodal dialogue systems; Wizard-of-Oz data collection; User Simulation methods; Reinforcement Learning and Evaluation methodologies.

Recent Advances in Reinforcement Learning

Автор: Sertan Girgin; Manuel Loth; R?mi Munos; Philippe P
Название: Recent Advances in Reinforcement Learning
ISBN: 3540897216 ISBN-13(EAN): 9783540897217
Издательство: Springer
Рейтинг:
Цена: 9781.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Constitutes the revised and selected papers of the 8th European Workshop on Reinforcement Learning, EWRL 2008, which took place in Villeneuve d`Ascq, France, during June 30 - July 3, 2008.

Transfer in Reinforcement Learning Domains

Автор: Matthew Taylor
Название: Transfer in Reinforcement Learning Domains
ISBN: 3642018815 ISBN-13(EAN): 9783642018817
Издательство: Springer
Рейтинг:
Цена: 23757.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Reinforcement Learning Background.- Related Work.- Empirical Domains.- Value Function Transfer via Inter-Task Mappings.- Extending Transfer via Inter-Task Mappings.- Transfer between Different Reinforcement Learning Methods.- Learning Inter-Task Mappings.- Conclusion and Future Work.

Transfer in Reinforcement Learning Domains

Автор: Matthew Taylor
Название: Transfer in Reinforcement Learning Domains
ISBN: 3642101860 ISBN-13(EAN): 9783642101861
Издательство: Springer
Рейтинг:
Цена: 23757.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: In reinforcement learning (RL) problems, learning agents sequentially execute actions with the goal of maximizing a reward signal. This book provides an introduction to the RL transfer problem and discusses methods which demonstrate the promise of this exciting area of research.

Qualitative Spatial Abstraction in Reinforcement Learning

Автор: Lutz Frommberger
Название: Qualitative Spatial Abstraction in Reinforcement Learning
ISBN: 3642266002 ISBN-13(EAN): 9783642266003
Издательство: Springer
Рейтинг:
Цена: 16070.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Reinforcement learning has evolved to tackle domains that are yet to be fully understood, or are too complex for a closed description. In this book the author investigates whether suitable abstraction methods can overcome the discipline`s deficiencies.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия