Transfer in Reinforcement Learning Domains, Matthew Taylor
Автор: Matthew Taylor Название: Transfer in Reinforcement Learning Domains ISBN: 3642018815 ISBN-13(EAN): 9783642018817 Издательство: Springer Рейтинг: Цена: 23757.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Reinforcement Learning Background.- Related Work.- Empirical Domains.- Value Function Transfer via Inter-Task Mappings.- Extending Transfer via Inter-Task Mappings.- Transfer between Different Reinforcement Learning Methods.- Learning Inter-Task Mappings.- Conclusion and Future Work.
Автор: Lutz Frommberger Название: Qualitative Spatial Abstraction in Reinforcement Learning ISBN: 3642266002 ISBN-13(EAN): 9783642266003 Издательство: Springer Рейтинг: Цена: 16070.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Reinforcement learning has evolved to tackle domains that are yet to be fully understood, or are too complex for a closed description. In this book the author investigates whether suitable abstraction methods can overcome the discipline`s deficiencies.
Описание: This book introduces a new paradigm called ‘Optimization in Changeable Spaces’ (OCS) as a useful tool for decision making and problem solving. It illustrates how OCS incorporates, searches, and constructively restructures the parameters, tangible and intangible, involved in the process of decision making. The book elaborates on OCS problems that can be modeled and solved effectively by using the concepts of competence set analysis, Habitual Domain (HD) and the mental operators called the 7-8-9 principles of deep knowledge of HD. In addition, new concepts of covering and discovering processes are proposed and formulated as mathematical tools to solve OCS problems. The book also includes reformulations of a number of illustrative real-life challenging problems that cannot be solved by traditional optimization techniques into OCS problems, and details how they can be addressed. Beyond that, it also includes perspectives related to innovation dynamics, management, artificial intelligence, artificial and e-economics, scientific discovery and knowledge extraction. This book will be of interest to managers of businesses and institutions, policy makers, and educators and students of decision making and behavior in DBA and/or MBA.
Автор: Marco Wiering; Martijn van Otterlo Название: Reinforcement Learning ISBN: 364244685X ISBN-13(EAN): 9783642446856 Издательство: Springer Рейтинг: Цена: 32651.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book presents up-to-date information on the main contemporary sub-fields of reinforcement learning, including partially observable environments, hierarchical task decompositions, relational knowledge representation and predictive state representations.
Автор: Shimon Whiteson Название: Adaptive Representations for Reinforcement Learning ISBN: 3642422314 ISBN-13(EAN): 9783642422317 Издательство: Springer Рейтинг: Цена: 15672.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Presenting the main results of new algorithms for reinforcement learning, this book also introduces a novel method for devising input representations as well as presenting a way to find a minimal set of features sufficient to describe the agent`s current state.
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru