Описание: This revised and updated edition of the bestseller provides a complete library of dimensional modeling techniques, the most comprehensive collection ever written.
Автор: Foster Provost Название: Data Science For Business: What You Need To Know About Data Mining And Dataanalytic Thinking ISBN: 1449361323 ISBN-13(EAN): 9781449361327 Издательство: Wiley Рейтинг: Цена: 6334.00 р. Наличие на складе: Есть (1 шт.) Описание: This broad, deep, but not-too-technical guide introduces you to the fundamental principles of data science and walks you through the "data-analytic thinking" necessary for extracting useful knowledge and business value from the data you collect.
Автор: David Nettleton Название: Commercial Data Mining ISBN: 0124166024 ISBN-13(EAN): 9780124166028 Издательство: Elsevier Science Рейтинг: Цена: 6230.00 р. Наличие на складе: Поставка под заказ.
Описание: Helps you learn that your organization does not need a huge volume of data or a Fortune 500 budget to generate business using existing information assets. This book guides you through the process from beginning to end and covers everything from business objectives to data sources, and selection to analysis and predictive modeling.
Автор: Fisher D et al Название: Teaching Literacy in the Visible Learning Classroom, Grades K-5 ISBN: 1506332366 ISBN-13(EAN): 9781506332369 Издательство: Sage Publications Рейтинг: Цена: 5067.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This K-5 book takes implementation and assessment to the next level by digging deeper into specific lessons and providing grade-level strategies, with an emphasis on planning and executing highly effective lessons supported by John Hattie`s Visible Learning research.
Автор: С.Aggarwal Название: Data Mining: The Textbook ISBN: 3319141414 ISBN-13(EAN): 9783319141411 Издательство: Springer Рейтинг: Цена: 9781.00 р. Наличие на складе: Поставка под заказ.
Описание: This textbook explores the different aspects of data mining from the fundamentals to the complex data types and their applications, capturing the wide diversity of problem domains for data mining issues.
Автор: Alewine Название: Introduction to Information Literacy for Students ISBN: 1119054699 ISBN-13(EAN): 9781119054696 Издательство: Wiley Рейтинг: Цена: 11397.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Introduction to Information Literacy for Students presents a concise, practical guide to navigating information in the digital age.
Автор: Alewine, Michael C Название: Introduction to Information Literacy for Students ISBN: 1119054753 ISBN-13(EAN): 9781119054757 Издательство: Wiley Рейтинг: Цена: 4110.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Introduction to Information Literacy for Students presents a concise, practical guide to navigating information in the digital age.
Автор: Jiawei Han Название: Data Mining: Concepts and Techniques, ISBN: 0123814790 ISBN-13(EAN): 9780123814791 Издательство: Elsevier Science Рейтинг: Цена: 9720.00 р. Наличие на складе: Поставка под заказ.
Описание: Data Mining: Concepts and Techniques provides the concepts and techniques in processing gathered data or information, which will be used in various applications. Specifically, it explains data mining and the tools used in discovering knowledge from the collected data. This book is referred as the knowledge discovery from data (KDD). It focuses on the feasibility, usefulness, effectiveness, and scalability of techniques of large data sets. After describing data mining, this edition explains the methods of knowing, preprocessing, processing, and warehousing data. It then presents information about data warehouses, online analytical processing (OLAP), and data cube technology. Then, the methods involved in mining frequent patterns, associations, and correlations for large data sets are described. The book details the methods for data classification and introduces the concepts and methods for data clustering. The remaining chapters discuss the outlier detection and the trends, applications, and research frontiers in data mining. This book is intended for Computer Science students, application developers, business professionals, and researchers who seek information on data mining.
Описание: Like the popular second edition, Data Mining: Practical Machine Learning Tools and Techniques offers a thorough grounding in machine learning concepts as well as practical advice on applying machine learning tools and techniques in real-world data mining situations. Inside, you'll learn all you need to know about preparing inputs, interpreting outputs, evaluating results, and the algorithmic methods at the heart of successful data mining?including both tried-and-true techniques of today as well as methods at the leading edge of contemporary research. <br><br>Complementing the book is a fully functional platform-independent open source Weka software for machine learning, available for free download. <br><br>The book is a major revision of the second edition that appeared in 2005. While the basic core remains the same, it has been updated to reflect the changes that have taken place over the last four or five years. The highlights for the updated new edition include completely revised technique sections; new chapter on Data Transformations, new chapter on Ensemble Learning, new chapter on Massive Data Sets, a new ?book release? version of the popular Weka machine learning open source software (developed by the authors and specific to the Third Edition); new material on ?multi-instance learning?; new information on ranking the classification, plus comprehensive updates and modernization throughout. All in all, approximately 100 pages of new material.<br> <br><br>* Thorough grounding in machine learning concepts as well as practical advice on applying the tools and techniques<br><br>* Algorithmic methods at the heart of successful data mining?including tired and true methods as well as leading edge methods<br><br>* Performance improvement techniques that work by transforming the input or output<br><br>* Downloadable Weka, a collection of machine learning algorithms for data mining tasks, including tools for data pre-processing, classification, regression, clustering, association rules, and visualization?in an updated, interactive interface. <br>
Автор: Ratner Bruce Название: Statistical and Machine-Learning Data Mining ISBN: 1439860912 ISBN-13(EAN): 9781439860915 Издательство: Taylor&Francis Рейтинг: Цена: 9033.00 р. Наличие на складе: Поставка под заказ.
Описание: Rev. ed. of: Statistical modeling and analysis for database marketing. c2003.
Автор: Hamstra Mark, Zaharia Matei Название: Learning Spark: Lightning-Fast Big Data Analytics ISBN: 1449358624 ISBN-13(EAN): 9781449358624 Издательство: Wiley Рейтинг: Цена: 5067.00 р. Наличие на складе: Поставка под заказ.
Описание: Written by the developers of Spark, this book will have data scientists and engineers up and running in no time.
Автор: Muenchen Название: R for SAS and SPSS Users ISBN: 1461406846 ISBN-13(EAN): 9781461406846 Издательство: Springer Рейтинг: Цена: 15372.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book introduces R using SAS and SPSS terms with which you are already familiar. The programs and practice datasets are available for download.The glossary defines over 50 R terms using SAS/SPSS jargon and again using R jargon.
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru