Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Fraud and Fraud Detection: A Data Analytics Approach + Website, Sunder Gee


Варианты приобретения
Цена: 8237.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-08-04
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Sunder Gee
Название:  Fraud and Fraud Detection: A Data Analytics Approach + Website
ISBN: 9781118779651
Издательство: Wiley
Классификация:

ISBN-10: 1118779657
Обложка/Формат: Hardback
Страницы: 352
Вес: 0.79 кг.
Дата издания: 23.01.2015
Серия: Economics/Business/Finance
Язык: English
Размер: 263 x 180 x 30
Читательская аудитория: Professional & vocational
Ключевые слова: Finance & accounting
Подзаголовок: A data analytics approach + website
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Англии
Описание: Detect fraud faster no matter how well hidden with IDEA automation Fraud and Fraud Detection takes an advanced approach to fraud management, providing step-by-step guidance on automating detection and forensics using CaseWare`s IDEA software.


People Analytics in the Era of Big Data: Changing the Way You Attract, Acquire, Develop, and Retain Talent

Автор: Isson Jean Paul
Название: People Analytics in the Era of Big Data: Changing the Way You Attract, Acquire, Develop, and Retain Talent
ISBN: 1119050782 ISBN-13(EAN): 9781119050780
Издательство: Wiley
Рейтинг:
Цена: 6178.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Apply predictive analytics throughout all stages of workforce management People Analytics in the Era of Big Data provides a blueprint for leveraging your talent pool through the use of data analytics.

Corporate Fraud Handbook, Fifth Edition: Preventio n and Detection

Автор: Wells
Название: Corporate Fraud Handbook, Fifth Edition: Preventio n and Detection
ISBN: 1119351987 ISBN-13(EAN): 9781119351986
Издательство: Wiley
Рейтинг:
Цена: 12514.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Delve into the mind of a fraudster to beat them at their own game Corporate Fraud Handbook details the many forms of fraud to help you identify red flags and prevent fraud before it occurs.

Fraud Analytics Using Descriptive, Predictive, and Social Network Techniques: A Guide to Data Science for Fraud Detection

Автор: Baesens Bart, Verbeke Wouter, Van Vlasselaer Veron
Название: Fraud Analytics Using Descriptive, Predictive, and Social Network Techniques: A Guide to Data Science for Fraud Detection
ISBN: 1119133122 ISBN-13(EAN): 9781119133124
Издательство: Wiley
Рейтинг:
Цена: 6178.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Detect fraud earlier to mitigate loss and prevent cascading damage Fraud Analytics Using Descriptive, Predictive, and Social Network Techniques is an authoritative guidebook for setting up a comprehensive fraud detection analytics solution.

Fraud Data Analytics Methodology: The fraud scenar io approach to uncovering fraud in core business s ystems

Автор: Vona
Название: Fraud Data Analytics Methodology: The fraud scenar io approach to uncovering fraud in core business s ystems
ISBN: 111918679X ISBN-13(EAN): 9781119186793
Издательство: Wiley
Рейтинг:
Цена: 11880.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Uncover hidden fraud and red flags using efficient data analytics Fraud Data Analytics Methodology addresses the need for clear, reliable fraud detection with a solid framework for a robust data analytic plan.

Benford`S Law: Theory, The General Law Of Relative Quantities, And Forensic Fraud Detection Applications

Автор: Kossovsky Alex Ely
Название: Benford`S Law: Theory, The General Law Of Relative Quantities, And Forensic Fraud Detection Applications
ISBN: 9814651206 ISBN-13(EAN): 9789814651202
Издательство: World Scientific Publishing
Цена: 8554.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Contrary to common intuition that all digits should occur randomly with equal chances in real data, empirical examinations consistently show that not all digits are created equal, but rather that low digits such as {1, 2, 3} occur much more frequently than high digits such as {7, 8, 9} in almost all data types

Benford`S Law: Theory, The General Law Of Relative Quantities, And Forensic Fraud Detection Applications

Автор: Kossovsky Alex Ely
Название: Benford`S Law: Theory, The General Law Of Relative Quantities, And Forensic Fraud Detection Applications
ISBN: 9814583685 ISBN-13(EAN): 9789814583688
Издательство: World Scientific Publishing
Рейтинг:
Цена: 34056.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

Contrary to common intuition that all digits should occur randomly with equal chances in real data, empirical examinations consistently show that not all digits are created equal, but rather that low digits such as {1, 2, 3} occur much more frequently than high digits such as {7, 8, 9} in almost all data types, such as those relating to geology, chemistry, astronomy, physics, and engineering, as well as in accounting, financial, econometrics, and demographics data sets. This intriguing digital phenomenon is known as Benford's Law.

This book gives a comprehensive and in-depth account of all the theoretical aspects, results, causes and explanations of Benford's Law, with a strong emphasis on the connection to real-life data and the physical manifestation of the law. In addition to such a bird's eye view of the digital phenomenon, the conceptual distinctions between digits, numbers, and quantities are explored; leading to the key finding that the phenomenon is actually quantitative in nature; originating from the fact that in extreme generality, nature creates many small quantities but very few big quantities, corroborating the motto "small is beautiful," and that therefore all this is applicable just as well to data written in the ancient Roman, Mayan, Egyptian, and other digit-less civilizations.

Fraudsters are typically not aware of this digital pattern and tend to invent numbers with approximately equal digital frequencies. The digital analyst can easily check reported data for compliance with this digital law, enabling the detection of tax evasion, Ponzi schemes, and other financial scams. The forensic fraud detection section in this book is written in a very concise and reader-friendly style; gathering all known methods and standards in the accounting and auditing industry; summarizing and fusing them into a singular coherent whole; and can be understood without deep knowledge in statistical theory or advanced mathematics. In addition, a digital algorithm is presented, enabling the auditor to detect fraud even when the sophisticated cheater is aware of the law and invents numbers accordingly. The algorithm employs a subtle inner digital pattern within the Benford's pattern itself. This newly discovered pattern is deemed to be nearly universal, being even more prevalent than the Benford phenomenon, as it is found in all random data sets, Benford as well as non-Benford types.

Fundamentals of Machine Learning for Predictive Data Analytics: Algorithms, Worked Examples, and Case Studies

Автор: Kelleher John D., Macnamee Brian, D`Arcy Aoife
Название: Fundamentals of Machine Learning for Predictive Data Analytics: Algorithms, Worked Examples, and Case Studies
ISBN: 0262029448 ISBN-13(EAN): 9780262029445
Издательство: MIT Press
Рейтинг:
Цена: 13543.00 р.
Наличие на складе: Нет в наличии.

Описание:

A comprehensive introduction to the most important machine learning approaches used in predictive data analytics, covering both theoretical concepts and practical applications.

Machine learning is often used to build predictive models by extracting patterns from large datasets. These models are used in predictive data analytics applications including price prediction, risk assessment, predicting customer behavior, and document classification. This introductory textbook offers a detailed and focused treatment of the most important machine learning approaches used in predictive data analytics, covering both theoretical concepts and practical applications. Technical and mathematical material is augmented with explanatory worked examples, and case studies illustrate the application of these models in the broader business context.

After discussing the trajectory from data to insight to decision, the book describes four approaches to machine learning: information-based learning, similarity-based learning, probability-based learning, and error-based learning. Each of these approaches is introduced by a nontechnical explanation of the underlying concept, followed by mathematical models and algorithms illustrated by detailed worked examples. Finally, the book considers techniques for evaluating prediction models and offers two case studies that describe specific data analytics projects through each phase of development, from formulating the business problem to implementation of the analytics solution. The book, informed by the authors' many years of teaching machine learning, and working on predictive data analytics projects, is suitable for use by undergraduates in computer science, engineering, mathematics, or statistics; by graduate students in disciplines with applications for predictive data analytics; and as a reference for professionals.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия