Applied Geostatistics for Reservoir Characterization, Kelkar M., Perez G.
Автор: Remy Название: Applied Geostatistics with SGeMS ISBN: 1107403243 ISBN-13(EAN): 9781107403246 Издательство: Cambridge Academ Рейтинг: Цена: 7762.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This practical book provides a detailed guide to using algorithms from the Stanford Geostatistical Modeling Software (SGeMS), an open-source computer package for solving problems involving spatially related variables. Accompanied by a CD with the software, it`s a useful user-guide for Earth Science graduates, and practitioners of environmental and petroleum engineering.
Автор: Xavier Sanchez-Vila; Jesus Carrera; Jaime G?mez-He Название: geoENV IV — Geostatistics for Environmental Applications ISBN: 1402021143 ISBN-13(EAN): 9781402021145 Издательство: Springer Рейтинг: Цена: 22201.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Contains forty-one selected full-text contributions from the Fourth European Conference on Geostatistics for Environmental Applications, geoENV IV, held in Barcelona, Spain, November 2002. This work intends to compile a set of papers from which the reader could perceive how geostatistics is applied within the environmental sciences.
Автор: Georges Verly; Michel David; Andre G. Journel; Ala Название: Geostatistics for Natural Resources Characterization ISBN: 9401081573 ISBN-13(EAN): 9789401081573 Издательство: Springer Рейтинг: Цена: 12157.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Автор: G. Verly; M. David; A. G. Journel; A. Marechal Название: Geostatistics for Natural Resources Characterization ISBN: 9401081581 ISBN-13(EAN): 9789401081580 Издательство: Springer Рейтинг: Цена: 6986.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Автор: Rue Название: Gaussian Markov Random Fields ISBN: 1584884320 ISBN-13(EAN): 9781584884323 Издательство: Taylor&Francis Рейтинг: Цена: 24499.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Gaussian Markov Random Field (GMRF) models, most widely used in spatial statistics are presented in this, the first book on the subject that provides a unified framework of GMRFs with particular emphasis on the computational aspects.
Автор: Am?lcar Soares; Maria Jo?o Pereira; Roussos Dimitr Название: geoENV VI – Geostatistics for Environmental Applications ISBN: 1402064470 ISBN-13(EAN): 9781402064470 Издательство: Springer Рейтинг: Цена: 23751.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Around 40 selected full-text contributions from the Sixth European Conference on Geostatistics for Environmental Applications, geoENV IV, Rhodes, October 2006 aim to compile a set of papers from which the reader could perceive how geostatistics is applied within the environmental sciences. A few selected theoretical contributions are also included.
Автор: Wackernagel Название: Multivariate Geostatistics ISBN: 3540441425 ISBN-13(EAN): 9783540441427 Издательство: Springer Рейтинг: Цена: 13974.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This fully revised third edition introduces geostatistics by emphasising the multivariate aspects for scientists, engineers and statisticians. The text contains a brief review of statistical concepts, a detailed introduction to linear geostatistics, and an account of 3 basic methods of multivariate analysis.
Автор: S. Henley Название: Nonparametric Geostatistics ISBN: 0853349770 ISBN-13(EAN): 9780853349778 Издательство: Springer Рейтинг: Цена: 20962.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The ideas in this book have been developed over the past three or four years while I was working at the Institute of Geological Sciences and later for Golder Associates. During that time all of the geological modelling and resource estimation studies I participated in had data that were non-ideal in one respect or another (or just plain 'dirty'): the standard ways of handling the data with kriging or with simpler parametric methods gave reason- able results, but always there were nagging doubts and some lack of confidence because of the corners that had to be cut in generat- ing a model. The bimodal distribution that was assumed to be 'close enough' to normal; the pattern of rich and poor zones that was not quite a trend yet made the data very non-stationary; and the many plotted variograms that would not fit any standard model variogram: these all contributed to the feeling that there should be something that statistics could say about the cases where hardly any assumptions could be made about the properties ofthe parent population.
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru