Автор: Joshua C. C. Chan , Dirk P. Kroese Название: Statistical Modeling and Computation ISBN: 107164131X ISBN-13(EAN): 9781071641316 Издательство: Springer Цена: 15243.00 р. Наличие на складе: Поставка под заказ.
Автор: Trevor Hastie; Robert Tibshirani; Jerome Friedman Название: The Elements of Statistical Learning ISBN: 0387848576 ISBN-13(EAN): 9780387848570 Издательство: Springer Рейтинг: Цена: 10480.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This major new edition features many topics not covered in the original, including graphical models, random forests, and ensemble methods. As before, it covers the conceptual framework for statistical data in our rapidly expanding computerized world.
Автор: Dirk P. Kroese; Joshua C.C. Chan Название: Statistical Modeling and Computation ISBN: 149395332X ISBN-13(EAN): 9781493953325 Издательство: Springer Рейтинг: Цена: 13973.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book provides an introduction to modern statistics. It also offers an integrated treatment of mathematical statistics and statistical computation, emphasizing statistical modeling, computational techniques, and applications.
Автор: Malley Название: Statistical Learning for Biomedical Data ISBN: 0521699096 ISBN-13(EAN): 9780521699099 Издательство: Cambridge Academ Рейтинг: Цена: 6494.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Biomedical researchers need machine learning techniques to make predictions such as survival/death or response to treatment when data sets are large and complex. This highly motivating introduction to these machines explains underlying principles in nontechnical language, using many examples and figures, and connects these new methods to familiar techniques.
Автор: Bradley Efron and Trevor Hastie Название: Computer Age Statistical Inference ISBN: 1107149894 ISBN-13(EAN): 9781107149892 Издательство: Cambridge Academ Рейтинг: Цена: 9029.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The twenty-first century has seen a breathtaking expansion of statistical methodology, both in scope and in influence. 'Big data', 'data science', and 'machine learning' have become familiar terms in the news, as statistical methods are brought to bear upon the enormous data sets of modern science and commerce. How did we get here? And where are we going? This book takes us on an exhilarating journey through the revolution in data analysis following the introduction of electronic computation in the 1950s. Beginning with classical inferential theories - Bayesian, frequentist, Fisherian - individual chapters take up a series of influential topics: survival analysis, logistic regression, empirical Bayes, the jackknife and bootstrap, random forests, neural networks, Markov chain Monte Carlo, inference after model selection, and dozens more. The distinctly modern approach integrates methodology and algorithms with statistical inference. The book ends with speculation on the future direction of statistics and data science.
Описание: Statistical methodology plays a key role in ensuring that DNA evidence is collected, interpreted, analyzed, and presented correctly. With the recent advances in computer technology, this methodology is more complex than ever before. There are a growing number of books in the area but none are devoted to the computational analysis of evidence.
Описание: Numerical computation, knowledge discovery and statistical data analysis integrated with powerful 2D and 3D graphics are the key topics of this book. The short Python code examples powered by the Java platform can be transformed to other programming languages, such as Java, Groovy, Ruby and BeanShell.
Автор: Agarwal Название: Statistical Methods for Recommender Systems ISBN: 1107036070 ISBN-13(EAN): 9781107036079 Издательство: Cambridge Academ Рейтинг: Цена: 7602.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Designing algorithms to recommend items such as news articles and movies to users is a challenging task in numerous web applications. The crux of the problem is to rank items based on users' responses to different items to optimize for multiple objectives. Major technical challenges are high dimensional prediction with sparse data and constructing high dimensional sequential designs to collect data for user modeling and system design. This comprehensive treatment of the statistical issues that arise in recommender systems includes detailed, in-depth discussions of current state-of-the-art methods such as adaptive sequential designs (multi-armed bandit methods), bilinear random-effects models (matrix factorization) and scalable model fitting using modern computing paradigms like MapReduce. The authors draw upon their vast experience working with such large-scale systems at Yahoo! and LinkedIn, and bridge the gap between theory and practice by illustrating complex concepts with examples from applications they are directly involved with.
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru