Principles Of Artificial Neural Networks (3Rd Edition), Graupe Daniel
Автор: Bishop, Christopher M. Название: Neural Networks for Pattern Recognition ISBN: 0198538642 ISBN-13(EAN): 9780198538646 Издательство: Oxford Academ Рейтинг: Цена: 13939.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book is the first to provide a comprehensive account of neural networks from a statistical perspective. Its emphasis is on pattern recognition, which currently represents the area of greatest applicability for neural networks. By focusing on pattern recognition, the book provides a much more extensive treatment of many topics than is available in earlier books.
Автор: Brian D. Ripley Название: Pattern Recognition and Neural Networks ISBN: 0521717701 ISBN-13(EAN): 9780521717700 Издательство: Cambridge Academ Рейтинг: Цена: 7762.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This 1996 book is a reliable account of the statistical framework for pattern recognition and machine learning. Valuable advice is included on both theory and applications, while case studies based on real data sets help readers develop their understanding. All data sets are available from www.stats.ox.ac.uk/~ripley/PRbook/
Автор: Dehuri Satchidananda Et Al Название: Integration Of Swarm Intelligence And Artificial Neural Network ISBN: 9814280143 ISBN-13(EAN): 9789814280143 Издательство: World Scientific Publishing Рейтинг: Цена: 16790.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Provides a forum for the dissemination of knowledge in both theoretical and applied research on swarm intelligence (SI) and artificial neural network (ANN). This title accelerates interaction between the two bodies of knowledge and fosters a unified development in the next generation of computational model for machine learning.
This book provides a starting point for software professionals to apply artificial neural networks for software reliability prediction without having analyst capability and expertise in various ANN architectures and their optimization.
Artificial neural network (ANN) has proven to be a universal approximator for any non-linear continuous function with arbitrary accuracy. This book presents how to apply ANN to measure various software reliability indicators: number of failures in a given time, time between successive failures, fault-prone modules and development efforts. The application of machine learning algorithm i.e. artificial neural networks application in software reliability prediction during testing phase as well as early phases of software development process are presented. Applications of artificial neural network for the above purposes are discussed with experimental results in this book so that practitioners can easily use ANN models for predicting software reliability indicators.
Описание: The two volume set, LNCS 9886 + 9887, constitutes the proceedings of the 25th International Conference on Artificial Neural Networks, ICANN 2016, held in Barcelona, Spain, in September 2016. The 121 full papers included in this volume were carefully reviewed and selected from 227 submissions.
Описание: The two volume set, LNCS 9886 + 9887, constitutes the proceedings of the 25th International Conference on Artificial Neural Networks, ICANN 2016, held in Barcelona, Spain, in September 2016. The 121 full papers included in this volume were carefully reviewed and selected from 227 submissions.
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru