Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Artificial Neural Networks and Machine Learning – ICANN 2016, Villa


Варианты приобретения
Цена: 10342.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Villa
Название:  Artificial Neural Networks and Machine Learning – ICANN 2016
ISBN: 9783319447803
Издательство: Springer
Классификация:

ISBN-10: 3319447807
Обложка/Формат: Paperback
Страницы: 557
Вес: 0.89 кг.
Дата издания: 2016
Серия: Theoretical Computer Science and General Issues
Язык: English
Иллюстрации: 173 black & white illustrations, biography
Размер: 234 x 156 x 30
Читательская аудитория: Professional & vocational
Основная тема: Computer Science
Подзаголовок: 25th International Conference on Artificial Neural Networks, Barcelona, Spain, September 6-9, 2016, Proceedings, Part II
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание: The two volume set, LNCS 9886 + 9887, constitutes the proceedings of the 25th International Conference on Artificial Neural Networks, ICANN 2016, held in Barcelona, Spain, in September 2016. The 121 full papers included in this volume were carefully reviewed and selected from 227 submissions.


Machine Learning

Автор: Kevin Murphy
Название: Machine Learning
ISBN: 0262018020 ISBN-13(EAN): 9780262018029
Издательство: MIT Press
Рейтинг:
Цена: 18622.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

A comprehensive introduction to machine learning that uses probabilistic models and inference as a unifying approach.

Today's Web-enabled deluge of electronic data calls for automated methods of data analysis. Machine learning provides these, developing methods that can automatically detect patterns in data and then use the uncovered patterns to predict future data. This textbook offers a comprehensive and self-contained introduction to the field of machine learning, based on a unified, probabilistic approach.

The coverage combines breadth and depth, offering necessary background material on such topics as probability, optimization, and linear algebra as well as discussion of recent developments in the field, including conditional random fields, L1 regularization, and deep learning. The book is written in an informal, accessible style, complete with pseudo-code for the most important algorithms. All topics are copiously illustrated with color images and worked examples drawn from such application domains as biology, text processing, computer vision, and robotics. Rather than providing a cookbook of different heuristic methods, the book stresses a principled model-based approach, often using the language of graphical models to specify models in a concise and intuitive way. Almost all the models described have been implemented in a MATLAB software package -- PMTK (probabilistic modeling toolkit) -- that is freely available online. The book is suitable for upper-level undergraduates with an introductory-level college math background and beginning graduate students.

Fundamentals of Machine Learning for Predictive Data Analytics: Algorithms, Worked Examples, and Case Studies

Автор: Kelleher John D., Macnamee Brian, D`Arcy Aoife
Название: Fundamentals of Machine Learning for Predictive Data Analytics: Algorithms, Worked Examples, and Case Studies
ISBN: 0262029448 ISBN-13(EAN): 9780262029445
Издательство: MIT Press
Рейтинг:
Цена: 13543.00 р.
Наличие на складе: Нет в наличии.

Описание:

A comprehensive introduction to the most important machine learning approaches used in predictive data analytics, covering both theoretical concepts and practical applications.

Machine learning is often used to build predictive models by extracting patterns from large datasets. These models are used in predictive data analytics applications including price prediction, risk assessment, predicting customer behavior, and document classification. This introductory textbook offers a detailed and focused treatment of the most important machine learning approaches used in predictive data analytics, covering both theoretical concepts and practical applications. Technical and mathematical material is augmented with explanatory worked examples, and case studies illustrate the application of these models in the broader business context.

After discussing the trajectory from data to insight to decision, the book describes four approaches to machine learning: information-based learning, similarity-based learning, probability-based learning, and error-based learning. Each of these approaches is introduced by a nontechnical explanation of the underlying concept, followed by mathematical models and algorithms illustrated by detailed worked examples. Finally, the book considers techniques for evaluating prediction models and offers two case studies that describe specific data analytics projects through each phase of development, from formulating the business problem to implementation of the analytics solution. The book, informed by the authors' many years of teaching machine learning, and working on predictive data analytics projects, is suitable for use by undergraduates in computer science, engineering, mathematics, or statistics; by graduate students in disciplines with applications for predictive data analytics; and as a reference for professionals.

Bayesian Reasoning and Machine Learning

Автор: Barber
Название: Bayesian Reasoning and Machine Learning
ISBN: 0521518148 ISBN-13(EAN): 9780521518147
Издательство: Cambridge Academ
Рейтинг:
Цена: 11088.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This practical introduction for final-year undergraduate and graduate students is ideally suited to computer scientists without a background in calculus and linear algebra. Numerous examples and exercises are provided. Additional resources available online and in the comprehensive software package include computer code, demos and teaching materials for instructors.

Principles Of Artificial Neural Networks (3Rd Edition)

Автор: Graupe Daniel
Название: Principles Of Artificial Neural Networks (3Rd Edition)
ISBN: 9814522732 ISBN-13(EAN): 9789814522731
Издательство: World Scientific Publishing
Рейтинг:
Цена: 19008.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Artificial neural networks are most suitable for solving problems that are complex, ill-defined, highly nonlinear, of many and different variables, and/or stochastic. Such problems are abundant in medicine, in finance, in security and beyond.This volume covers the basic theory and architecture of the major artificial neural networks. Uniquely, it presents 18 complete case studies of applications of neural networks in various fields, ranging from cell-shape classification to micro-trading in finance and to constellation recognition - all with their respective source codes. These case studies demonstrate to the readers in detail how such case studies are designed and executed and how their specific results are obtained.The book is written for a one-semester graduate or senior-level undergraduate course on artificial neural networks. It is also intended to be a self-study and a reference text for scientists, engineers and for researchers in medicine, finance and data mining.

Artificial Neural Networks

Автор: da Silva
Название: Artificial Neural Networks
ISBN: 3319431617 ISBN-13(EAN): 9783319431611
Издательство: Springer
Рейтинг:
Цена: 13974.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book provides comprehensive coverage of neural networks, their evolution, their structure, the problems they can solve, and their applications. The first half of the book looks at theoretical investigations on artificial neural networks and addresses the key architectures that are capable of implementation in various application scenarios.

Artificial Neural Networks in Pattern Recognition

Автор: Schwenker
Название: Artificial Neural Networks in Pattern Recognition
ISBN: 3319461818 ISBN-13(EAN): 9783319461816
Издательство: Springer
Рейтинг:
Цена: 8106.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book constitutes the refereed proceedings of the 7th IAPR TC3 International Workshop on Artificial Neural Networks in Pattern Recognition, ANNPR 2016, held in Ulm, Germany, in September 2016.

Artificial Neural Networks and Machine Learning – ICANN 2016

Автор: Villa
Название: Artificial Neural Networks and Machine Learning – ICANN 2016
ISBN: 3319447777 ISBN-13(EAN): 9783319447773
Издательство: Springer
Рейтинг:
Цена: 10342.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The two volume set, LNCS 9886 + 9887, constitutes the proceedings of the 25th International Conference on Artificial Neural Networks, ICANN 2016, held in Barcelona, Spain, in September 2016. The 121 full papers included in this volume were carefully reviewed and selected from 227 submissions.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия