Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Mean Field Simulation for Monte Carlo Integration, Del Moral


Варианты приобретения
Цена: 7961.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Del Moral
Название:  Mean Field Simulation for Monte Carlo Integration
ISBN: 9781138198739
Издательство: Taylor&Francis
Классификация:
ISBN-10: 1138198730
Обложка/Формат: Paperback
Страницы: 626
Вес: 0.91 кг.
Дата издания: 26.10.2016
Серия: Chapman & hall/crc monographs on statistics and applied probability
Язык: English
Иллюстрации: 9 illustrations, black and white
Размер: 158 x 235 x 42
Читательская аудитория: Tertiary education (us: college)
Ключевые слова: Probability & statistics, MATHEMATICS / Probability & Statistics / General,MATHEMATICS / Probability & Statistics / Bayesian Analysis
Основная тема: Probability
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Европейский союз
Описание:

In the last three decades, there has been a dramatic increase in the use of interacting particle methods as a powerful tool in real-world applications of Monte Carlo simulation in computational physics, population biology, computer sciences, and statistical machine learning. Ideally suited to parallel and distributed computation, these advanced particle algorithms include nonlinear interacting jump diffusions; quantum, diffusion, and resampled Monte Carlo methods; Feynman-Kac particle models; genetic and evolutionary algorithms; sequential Monte Carlo methods; adaptive and interacting Markov chain Monte Carlo models; bootstrapping methods; ensemble Kalman filters; and interacting particle filters.

Mean Field Simulation for Monte Carlo Integration presents the first comprehensive and modern mathematical treatment of mean field particle simulation models and interdisciplinary research topics, including interacting jumps and McKean-Vlasov processes, sequential Monte Carlo methodologies, genetic particle algorithms, genealogical tree-based algorithms, and quantum and diffusion Monte Carlo methods.

Along with covering refined convergence analysis on nonlinear Markov chain models, the author discusses applications related to parameter estimation in hidden Markov chain models, stochastic optimization, nonlinear filtering and multiple target tracking, stochastic optimization, calibration and uncertainty propagations in numerical codes, rare event simulation, financial mathematics, and free energy and quasi-invariant measures arising in computational physics and population biology.

This book shows how mean field particle simulation has revolutionized the field of Monte Carlo integration and stochastic algorithms. It will help theoretical probability researchers, applied statisticians, biologists, statistical physicists, and computer scientists work better across their own disciplinary boundaries.




Monte Carlo Methods in Financial Engineering

Автор: Glasserman
Название: Monte Carlo Methods in Financial Engineering
ISBN: 0387004513 ISBN-13(EAN): 9780387004518
Издательство: Springer
Рейтинг:
Цена: 11179.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: From the reviews: "Paul Glasserman has written an astonishingly good book that bridges financial engineering and the Monte Carlo method. The book will appeal to graduate students, researchers, and most of all, practicing financial engineers [...] So often, financial engineering texts are very theoretical. This book is not."

Monte Carlo Methods in Bayesian Computation

Автор: Chen Ming-Hui, Shao Qi-Man, Ibrahim Joseph G.
Название: Monte Carlo Methods in Bayesian Computation
ISBN: 0387989358 ISBN-13(EAN): 9780387989358
Издательство: Springer
Рейтинг:
Цена: 20962.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book examines advanced Bayesian computational methods. It presents methods for sampling from posterior distributions and discusses how to compute posterior quantities of interest using Markov chain Monte Carlo (MCMC) samples. This book examines each of these issues in detail and heavily focuses on computing various posterior quantities of interest from a given MCMC sample. Several topics are addressed, including techniques for MCMC sampling, Monte Carlo methods for estimation of posterior quantities, improving simulation accuracy, marginal posterior density estimation, estimation of normalizing constants, constrained parameter problems, highest posterior density interval calculations, computation of posterior modes, and posterior computations for proportional hazards models and Dirichlet process models. The authors also discuss computions involving model comparisons, including both nested and non-nested models, marginal likelihood methods, ratios of normalizing constants, Bayes factors, the Savage-Dickey density ratio, Stochastic Search Variable Selection, Bayesian Model Averaging, the reverse jump algorithm, and model adequacy using predictive and latent residual approaches.The book presents an equal mixture of theory and applications involving real data. The book is intended as a graduate textbook or a reference book for a one semester course at the advanced masters or Ph.D. level. It would also serve as a useful reference book for applied or theoretical researchers as well as practitioners.Ming-Hui Chen is Associate Professor of Mathematical Sciences at Worcester Polytechnic Institute, Qu-Man Shao is Assistant Professor of Mathematics at the University of Oregon. Joseph G. Ibrahim is Associate Professor of Biostatistics at the Harvard School of Public Health and Dana-Farber Cancer Institute.

Markov Chain Monte Carlo

Автор: Gamerman, Dani.
Название: Markov Chain Monte Carlo
ISBN: 1584885874 ISBN-13(EAN): 9781584885870
Издательство: Taylor&Francis
Рейтинг:
Цена: 15312.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Incorporating changes in theory and highlighting various applications, this book presents a comprehensive introduction to the methods of Markov Chain Monte Carlo (MCMC) simulation technique. It incorporates the developments in MCMC, including reversible jump, slice sampling, bridge sampling, path sampling, multiple-try, and delayed rejection.

Simulation and the Monte Carlo Method

Автор: Rubinstein Reuven Y.
Название: Simulation and the Monte Carlo Method
ISBN: 1118632168 ISBN-13(EAN): 9781118632161
Издательство: Wiley
Рейтинг:
Цена: 17416.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Simulation and the Monte Carlo Method, Third Edition reflects the latest developments in the field and presents a fully updated and comprehensive account of the major topics that have emerged in Monte Carlo simulation since the publication of the classic First Edition over more than a quarter of a century ago.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия