Quantum Invariants of Knots and 3-Manifolds, Vladimir G. Turaev
Автор: Giampiero Esposito; A.Yu. Kamenshchik; G. Pollifro Название: Euclidean Quantum Gravity on Manifolds with Boundary ISBN: 9401064520 ISBN-13(EAN): 9789401064521 Издательство: Springer Рейтинг: Цена: 14365.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The following chapters are devoted to the standard theory of the effective action and the geometric im- provement due to Vilkovisky, the manifestly covariant quantization of gauge fields, zeta-function regularization in mathematics and in quantum field theory, and the problem of boundary conditions in one-loop quantum theory.
Автор: Hillman Jonathan Название: Algebraic Invariants Of Links (2Nd Edition) ISBN: 9814407380 ISBN-13(EAN): 9789814407380 Издательство: World Scientific Publishing Рейтинг: Цена: 19008.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Serves as a reference on links and on the invariants derived via algebraic topology from covering spaces of link exteriors. This second edition introduces two new chapters - twisted polynomial invariants and singularities of plane curves. Each replaces brief sketches in the first edition.
Описание: This work offers the proof of the remarkable relationship between Seiberg-Witten and Gromov invariants on symplectic 4-manifolds. It is a companion to "Topics on Symplectic 4-Manifolds" published in 1998 and brings together articles published in two American journals.
Автор: Li Weiping Название: Lecture Notes on Knot Invariants ISBN: 9814675962 ISBN-13(EAN): 9789814675963 Издательство: World Scientific Publishing Рейтинг: Цена: 5069.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:
The volume is focused on the basic calculation skills of various knot invariants defined from topology and geometry. It presents the detailed Hecke algebra and braid representation to illustrate the original Jones polynomial (rather than the algebraic formal definition many other books and research articles use) and provides self-contained proofs of the Tait conjecture (one of the big achievements from the Jones invariant). It also presents explicit computations to the Casson-Lin invariant via braid representations.
With the approach of an explicit computational point of view on knot invariants, this user-friendly volume will benefit readers to easily understand low-dimensional topology from examples and computations, rather than only knowing terminologies and theorems.
Автор: Wright Название: Invariants of Quadratic Differential Forms ISBN: 1107493935 ISBN-13(EAN): 9781107493933 Издательство: Cambridge Academ Рейтинг: Цена: 3008.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Originally published in 1908 in the Cambridge Tracts in Mathematics and Mathematical Physics series, this book provides a concise account regarding the invariant theory connected with a single quadratic differential form. This book will be of value to anyone with an interest in quadratic differential forms and the history of mathematics.
Автор: Flusser, Jan. Название: Moments and Moment Invariants in Pattern Recognition ISBN: 0470699876 ISBN-13(EAN): 9780470699874 Издательство: Wiley Рейтинг: Цена: 15515.00 р. Наличие на складе: Поставка под заказ.
Описание: Moments and Moment Invariants in Pattern Recognition presents a survey of fundamental and topical pattern recognition methods based on image moments. The authors expound on the establishment of the use of invariant moments in pattern recognition and continue by presenting a systematic review of the basic definitions and properties of moments.
Автор: Markus Banagl Название: Topological Invariants of Stratified Spaces ISBN: 3642072488 ISBN-13(EAN): 9783642072482 Издательство: Springer Цена: 13974.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The homology of manifolds enjoys a remarkable symmetry: Poincare duality. If the manifold is triangulated, then this duality can be established by associating to a s- plex its dual block in the barycentric subdivision. In a manifold, the dual block is a cell, so the chain complex based on the dual blocks computes the homology of the manifold. Poincare duality then serves as a cornerstone of manifold classi cation theory. One reason is that it enables the de nition of a fundamental bordism inva- ant, the signature. Classifying manifolds via the surgery program relies on modifying a manifold by executing geometric surgeries. The trace of the surgery is a bordism between the original manifold and the result of surgery. Since the signature is a b- dism invariant, it does not change under surgery and is thus a basic obstruction to performing surgery. Inspired by Hirzebruch's signature theorem, a method of Thom constructs characteristic homology classes using the bordism invariance of the s- nature. These classes are not in general homotopy invariants and consequently are ne enough to distinguish manifolds within the same homotopy type. Singular spaces do not enjoy Poincare duality in ordinary homology. After all, the dual blocks are not cells anymore, but cones on spaces that may not be spheres. This book discusses when, and how, the invariants for manifolds described above can be established for singular spaces.
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru