Computer vision and machine learning with rgb-d sensors,
Автор: Christopher M. Bishop Название: Pattern Recognition and Machine Learning ISBN: 0387310738 ISBN-13(EAN): 9780387310732 Издательство: Springer Рейтинг: Цена: 11878.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Familiarity with multivariate calculus and basic linear algebra is required, and some experience in the use of probabilities would be helpful though not essential as the book includes a self-contained introduction to basic probability theory.
Автор: Darren Cook Название: Practical Machine Learning with H2O ISBN: 149196460X ISBN-13(EAN): 9781491964606 Издательство: Wiley Рейтинг: Цена: 6334.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This hands-on guide teaches you how to use H20 with only minimal math and theory behind the learning algorithms.
A comprehensive introduction to the most important machine learning approaches used in predictive data analytics, covering both theoretical concepts and practical applications.
Machine learning is often used to build predictive models by extracting patterns from large datasets. These models are used in predictive data analytics applications including price prediction, risk assessment, predicting customer behavior, and document classification. This introductory textbook offers a detailed and focused treatment of the most important machine learning approaches used in predictive data analytics, covering both theoretical concepts and practical applications. Technical and mathematical material is augmented with explanatory worked examples, and case studies illustrate the application of these models in the broader business context.
After discussing the trajectory from data to insight to decision, the book describes four approaches to machine learning: information-based learning, similarity-based learning, probability-based learning, and error-based learning. Each of these approaches is introduced by a nontechnical explanation of the underlying concept, followed by mathematical models and algorithms illustrated by detailed worked examples. Finally, the book considers techniques for evaluating prediction models and offers two case studies that describe specific data analytics projects through each phase of development, from formulating the business problem to implementation of the analytics solution. The book, informed by the authors' many years of teaching machine learning, and working on predictive data analytics projects, is suitable for use by undergraduates in computer science, engineering, mathematics, or statistics; by graduate students in disciplines with applications for predictive data analytics; and as a reference for professionals.
Data Mining: Practical Machine Learning Tools and Techniques, Fourth Edition, offers a thorough grounding in machine learning concepts, along with practical advice on applying these tools and techniques in real-world data mining situations. This highly anticipated fourth edition of the most acclaimed work on data mining and machine learning teaches readers everything they need to know to get going, from preparing inputs, interpreting outputs, evaluating results, to the algorithmic methods at the heart of successful data mining approaches.
Extensive updates reflect the technical changes and modernizations that have taken place in the field since the last edition, including substantial new chapters on probabilistic methods and on deep learning. Accompanying the book is a new version of the popular WEKA machine learning software from the University of Waikato. Authors Witten, Frank, Hall, and Pal include today's techniques coupled with the methods at the leading edge of contemporary research.
Please visit the book companion website at https: //www.cs.waikato.ac.nz/ ml/weka/book.html.
It contains
Powerpoint slides for Chapters 1-12. This is a very comprehensive teaching resource, with many PPT slides covering each chapter of the book
Online Appendix on the Weka workbench; again a very comprehensive learning aid for the open source software that goes with the book
Table of contents, highlighting the many new sections in the 4th edition, along with reviews of the 1st edition, errata, etc.
Provides a thorough grounding in machine learning concepts, as well as practical advice on applying the tools and techniques to data mining projects
Presents concrete tips and techniques for performance improvement that work by transforming the input or output in machine learning methods
Includes a downloadable WEKA software toolkit, a comprehensive collection of machine learning algorithms for data mining tasks-in an easy-to-use interactive interface
Includes open-access online courses that introduce practical applications of the material in the book
Автор: Mitchell Название: Machine Learning ISBN: 0071154671 ISBN-13(EAN): 9780071154673 Издательство: McGraw-Hill Рейтинг: Цена: 10466.00 р. Наличие на складе: Поставка под заказ.
Описание: Covers the field of machine learning, which is the study of algorithms that allow computer programs to automatically improve through experience. This book is intended to support upper level undergraduate and introductory level graduate courses in machine learning.
Автор: Shalev-Shwartz Название: Understanding Machine Learning ISBN: 1107057132 ISBN-13(EAN): 9781107057135 Издательство: Cambridge Academ Рейтинг: Цена: 11194.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Machine learning is one of the fastest growing areas of computer science, with far-reaching applications. This book explains the principles behind the automated learning approach and the considerations underlying its usage. The authors explain the `hows` and `whys` of machine-learning algorithms, making the field accessible to both students and practitioners.
Описание: Like the popular second edition, Data Mining: Practical Machine Learning Tools and Techniques offers a thorough grounding in machine learning concepts as well as practical advice on applying machine learning tools and techniques in real-world data mining situations. Inside, you'll learn all you need to know about preparing inputs, interpreting outputs, evaluating results, and the algorithmic methods at the heart of successful data mining?including both tried-and-true techniques of today as well as methods at the leading edge of contemporary research. <br><br>Complementing the book is a fully functional platform-independent open source Weka software for machine learning, available for free download. <br><br>The book is a major revision of the second edition that appeared in 2005. While the basic core remains the same, it has been updated to reflect the changes that have taken place over the last four or five years. The highlights for the updated new edition include completely revised technique sections; new chapter on Data Transformations, new chapter on Ensemble Learning, new chapter on Massive Data Sets, a new ?book release? version of the popular Weka machine learning open source software (developed by the authors and specific to the Third Edition); new material on ?multi-instance learning?; new information on ranking the classification, plus comprehensive updates and modernization throughout. All in all, approximately 100 pages of new material.<br> <br><br>* Thorough grounding in machine learning concepts as well as practical advice on applying the tools and techniques<br><br>* Algorithmic methods at the heart of successful data mining?including tired and true methods as well as leading edge methods<br><br>* Performance improvement techniques that work by transforming the input or output<br><br>* Downloadable Weka, a collection of machine learning algorithms for data mining tasks, including tools for data pre-processing, classification, regression, clustering, association rules, and visualization?in an updated, interactive interface. <br>
Автор: Roberto Cipolla; Sebastiano Battiato; Giovanni Mar Название: Machine Learning for Computer Vision ISBN: 3642446868 ISBN-13(EAN): 9783642446863 Издательство: Springer Рейтинг: Цена: 16977.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Collecting articles covering talks and tutorials from the latest session of the International Computer Vision Summer School (ICVSS), this book offers a thorough exploration of current progress in the science and technology of making machines that see.
Автор: Barber Название: Bayesian Reasoning and Machine Learning ISBN: 0521518148 ISBN-13(EAN): 9780521518147 Издательство: Cambridge Academ Рейтинг: Цена: 11088.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This practical introduction for final-year undergraduate and graduate students is ideally suited to computer scientists without a background in calculus and linear algebra. Numerous examples and exercises are provided. Additional resources available online and in the comprehensive software package include computer code, demos and teaching materials for instructors.
Автор: Marcus A. Maloof Название: Machine Learning and Data Mining for Computer Security ISBN: 1849965447 ISBN-13(EAN): 9781849965446 Издательство: Springer Рейтинг: Цена: 19564.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: "Machine Learning and Data Mining for Computer Security" provides an overview of the current state of research in machine learning and data mining as it applies to problems in computer security.
Автор: Kaehler Adrian, Bradski Gary Название: Learning Opencv 3: Computer Vision in C++ with the Opencv Library ISBN: 1491937998 ISBN-13(EAN): 9781491937990 Издательство: Wiley Рейтинг: Цена: 10770.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Get started in the rapidly expanding field of computer vision with this practical guide. Written by Adrian Kaehler and Gary Bradski, creator of the open source OpenCV library, this book provides a thorough introduction for developers, academics, roboticists, and hobbyists.
Автор: Shanmugamani Rajalingappaa Название: Deep Learning for Computer Vision ISBN: 1788295625 ISBN-13(EAN): 9781788295628 Издательство: Неизвестно Цена: 8091.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Deep learning has shown its power in several application areas of Artificial Intelligence, especially in Computer Vision, the science of manipulating and processing images. In this book, you will learn different techniques in deep learning to accomplish tasks related to object classification, object detection, image segmentation, captioning, ...
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru