Описание: The increasing presence of mobile robots in our everyday lives introduces the requirements for their intelligent and autonomous features. Therefore the next generation of mobile robots should be more self-capable, in respect to: increasing of their functionality in unforeseen situations, decreasing of the human involvement in their everyday operations and their maintenance; being robust; fault tolerant and reliable in their operation.Although mobile robotic systems have been a topic of research for decades and aside the technology improvements nowadays, the subject on how to program and making them more autonomous in their operations is still an open field for research.Applying bio-inspired, organic approaches in robotics domain is one of the methodologies that are considered that would help on making the robots more autonomous and self-capable, i.e. having properties such as: self-reconfiguration, self-adaptation, self-optimization, etc.In this book several novel biologically inspired approaches for walking robots (multi-legged and humanoid) domain are introduced and elaborated. They are related to self-organized and self-stabilized robot walking, anomaly detection within robot systems using self-adaptation, and mitigating the faulty robot conditions by self-reconfiguration of a multi-legged walking robot. The approaches presented have been practically evaluated in various test scenarios, the results from the experiments are discussed in details and their practical usefulness is validated.
Описание: This book presents the development of a new multimodal human-robot interface for testing and validating control strategies applied to robotic walkers for assisting human mobility and gait rehabilitation. The aim is to achieve a closer interaction between the robotic device and the individual, empowering the rehabilitation potential of such devices in clinical applications. A new multimodal human-robot interface for testing and validating control strategies applied to robotic walkers for assisting human mobility and gait rehabilitation is presented. Trends and opportunities for future advances in the field of assistive locomotion via the development of hybrid solutions based on the combination of smart walkers and biomechatronic exoskeletons are also discussed.
Автор: Toshio Fukuda; Yasuhisa Hasegawa; Kosuke Sekiyama; Название: Multi-Locomotion Robotic Systems ISBN: 3642445500 ISBN-13(EAN): 9783642445507 Издательство: Springer Рейтинг: Цена: 18284.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The material covered here is at the frontiers of robot technology, inspired by the complex movement of animals. It includes Passive Dynamic Autonomous Control (PDAC), robot motion control, multi-legged walking and climbing as well as brachiation.
Автор: Miomir Vukobratovic; Branislav Borovac; Dusan Surl Название: Biped Locomotion ISBN: 3642830080 ISBN-13(EAN): 9783642830082 Издательство: Springer Рейтинг: Цена: 16979.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Here for the first time in one book is a comprehensive and systematic approach to the dynamic modeling and control of biped locomotion robots. A survey is included of various approaches to the control of biped robots, and a new approach to the control of biped systems based on a complete dynamic model is presented in detail.
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru