A comprehensive introduction to the most important machine learning approaches used in predictive data analytics, covering both theoretical concepts and practical applications.
Machine learning is often used to build predictive models by extracting patterns from large datasets. These models are used in predictive data analytics applications including price prediction, risk assessment, predicting customer behavior, and document classification. This introductory textbook offers a detailed and focused treatment of the most important machine learning approaches used in predictive data analytics, covering both theoretical concepts and practical applications. Technical and mathematical material is augmented with explanatory worked examples, and case studies illustrate the application of these models in the broader business context.
After discussing the trajectory from data to insight to decision, the book describes four approaches to machine learning: information-based learning, similarity-based learning, probability-based learning, and error-based learning. Each of these approaches is introduced by a nontechnical explanation of the underlying concept, followed by mathematical models and algorithms illustrated by detailed worked examples. Finally, the book considers techniques for evaluating prediction models and offers two case studies that describe specific data analytics projects through each phase of development, from formulating the business problem to implementation of the analytics solution. The book, informed by the authors' many years of teaching machine learning, and working on predictive data analytics projects, is suitable for use by undergraduates in computer science, engineering, mathematics, or statistics; by graduate students in disciplines with applications for predictive data analytics; and as a reference for professionals.
Автор: Marsland Название: Machine Learning ISBN: 1466583282 ISBN-13(EAN): 9781466583283 Издательство: Taylor&Francis Рейтинг: Цена: 12095.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:
A Proven, Hands-On Approach for Students without a Strong Statistical Foundation
Since the best-selling first edition was published, there have been several prominent developments in the field of machine learning, including the increasing work on the statistical interpretations of machine learning algorithms. Unfortunately, computer science students without a strong statistical background often find it hard to get started in this area.
Remedying this deficiency, Machine Learning: An Algorithmic Perspective, Second Edition helps students understand the algorithms of machine learning. It puts them on a path toward mastering the relevant mathematics and statistics as well as the necessary programming and experimentation.
New to the Second Edition
Two new chapters on deep belief networks and Gaussian processes
Reorganization of the chapters to make a more natural flow of content
Revision of the support vector machine material, including a simple implementation for experiments
New material on random forests, the perceptron convergence theorem, accuracy methods, and conjugate gradient optimization for the multi-layer perceptron
Additional discussions of the Kalman and particle filters
Improved code, including better use of naming conventions in Python
Suitable for both an introductory one-semester course and more advanced courses, the text strongly encourages students to practice with the code. Each chapter includes detailed examples along with further reading and problems. All of the code used to create the examples is available on the author's website.
Автор: Fuchen Sun; Kar-Ann Toh; Manuel Grana Romay; Kezhi Название: Extreme Learning Machines 2013: Algorithms and Applications ISBN: 331904740X ISBN-13(EAN): 9783319047409 Издательство: Springer Рейтинг: Цена: 19591.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: An extreme learning machine (ELM) is a single layer feed-forward neural network alike learning system, whose connections from the input layer to the hidden layer are randomly generated, while the connections from the hidden layer to the output layer are learned through linear learning methods.
Описание: This book presents machine learning models and algorithms to address big data classification problems. The first part mainly focuses on the topics that are needed to help analyze and understand data and big data. The third part presents the topics required to understand and select machine learning techniques to classify big data.
Описание: This book describes the latest developments in nonlinear methods and their application in fault diagnosis. It details advances in machine learning theory and contains numerous case studies with real-world data from industry.
Автор: John J. Grefenstette Название: Genetic Algorithms for Machine Learning ISBN: 0792394070 ISBN-13(EAN): 9780792394075 Издательство: Springer Рейтинг: Цена: 27944.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Features the articles that were selected from preliminary versions presented at the International Conference on Genetic Algorithms in June 1991, as well as at a special Workshop on Genetic Algorithms for Machine Learning at the same Conference.
Автор: Mohammed Название: Machine Learning,Algorithms And App ISBN: 1498705383 ISBN-13(EAN): 9781498705387 Издательство: Taylor&Francis Рейтинг: Цена: 12707.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Machine learning, one of the top emerging sciences, has an extremely broad range of applications. However, many books on the subject provide only a theoretical approach, making it difficult for a newcomer to grasp the subject material. This book provides a more practical approach by explaining the concepts of machine learning algorithms and describing the areas of application for each algorithm, using simple practical examples to demonstrate each algorithm and showing how different issues related to these algorithms are applied.
Автор: Japkowicz Название: Evaluating Learning Algorithms ISBN: 1107653118 ISBN-13(EAN): 9781107653115 Издательство: Cambridge Academ Рейтинг: Цена: 8870.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book gives a solid basis for conducting performance evaluations of learning algorithms in practical settings with an emphasis on classification algorithms. The authors describe several techniques designed to deal with performance measures and methods, error estimation or re-sampling techniques, statistical significance testing, data set selection and evaluation benchmark design.
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru