Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Monte Carlo Methods in Bayesian Computation. M.-H. Chen, Q.-M. Shao, J.G. Ibrahim., 


Варианты приобретения
Цена: 23058.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания


Название:  Monte Carlo Methods in Bayesian Computation. M.-H. Chen, Q.-M. Shao, J.G. Ibrahim.
Перевод названия: М.Х. Чен: Методы Монте-Карло в Байесовских вычислениях
ISBN: 9781461270744
Издательство: Springer
Классификация:


ISBN-10: 146127074X
Обложка/Формат: Paperback
Страницы: 387
Вес: 0.62 кг.
Дата издания: 2000
Серия: Springer series in statistics
Язык: English
Издание: Softcover reprint of
Иллюстрации: Xiii, 387 p.
Размер: 234 x 156 x 21
Читательская аудитория: Professional & vocational
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание: Sampling from the posterior distribution and computing posterior quanti- ties of interest using Markov chain Monte Carlo (MCMC) samples are two major challenges involved in advanced Bayesian computation. This book examines each of these issues in detail and focuses heavily on comput- ing various posterior quantities of interest from a given MCMC sample. Several topics are addressed, including techniques for MCMC sampling, Monte Carlo (MC) methods for estimation of posterior summaries, improv- ing simulation accuracy, marginal posterior density estimation, estimation of normalizing constants, constrained parameter problems, Highest Poste- rior Density (HPD) interval calculations, computation of posterior modes, and posterior computations for proportional hazards models and Dirichlet process models. Also extensive discussion is given for computations in- volving model comparisons, including both nested and nonnested models. Marginal likelihood methods, ratios of normalizing constants, Bayes fac- tors, the Savage-Dickey density ratio, Stochastic Search Variable Selection (SSVS), Bayesian Model Averaging (BMA), the reverse jump algorithm, and model adequacy using predictive and latent residual approaches are also discussed. The book presents an equal mixture of theory and real applications.


Monte Carlo Methods in Financial Engineering

Автор: Glasserman
Название: Monte Carlo Methods in Financial Engineering
ISBN: 0387004513 ISBN-13(EAN): 9780387004518
Издательство: Springer
Рейтинг:
Цена: 11179.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: From the reviews: "Paul Glasserman has written an astonishingly good book that bridges financial engineering and the Monte Carlo method. The book will appeal to graduate students, researchers, and most of all, practicing financial engineers [...] So often, financial engineering texts are very theoretical. This book is not."

Mathematical Statistics

Автор: Shao Jun
Название: Mathematical Statistics
ISBN: 0387953825 ISBN-13(EAN): 9780387953823
Издательство: Springer
Рейтинг:
Цена: 15372.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This graduate textbook covers topics in statistical theory essential for graduate students preparing for work on a Ph.D. The first chapter provides a quick overview of concepts and results in measure-theoretic probability theory that are useful in statistics.

Self-Normalized Processes

Автор: Victor H. Pe?a; Tze Leung Lai; Qi-Man Shao
Название: Self-Normalized Processes
ISBN: 3642099262 ISBN-13(EAN): 9783642099267
Издательство: Springer
Рейтинг:
Цена: 10480.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This volume covers recent developments in self-normalized processes, including self-normalized large and moderate deviations, and laws of the iterated logarithms for self-normalized martingales.

Mathematical Statistics: Exercises and Solutions

Автор: Shao
Название: Mathematical Statistics: Exercises and Solutions
ISBN: 0387249702 ISBN-13(EAN): 9780387249704
Издательство: Springer
Рейтинг:
Цена: 12577.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The exercises are grouped into seven chapters with titles matching those in the author`s Mathematical Statistics. Can also be used as a stand-alone because exercises and solutions are comprehensible independently of their source, and notation and terminology are explained in the front of the book.

The Jackknife and Bootstrap

Автор: Jun Shao; Dongsheng Tu
Название: The Jackknife and Bootstrap
ISBN: 1461269032 ISBN-13(EAN): 9781461269038
Издательство: Springer
Рейтинг:
Цена: 46118.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The resampling methods replace theoreti- cal derivations required in applying traditional methods (such as substitu- tion and linearization) in statistical analysis by repeatedly resampling the original data and making inferences from the resamples.

Eigenvalue Problems: Algorithms, Software and Applications, in Petascale Computing

Автор: Tetsuya Sakurai; Shao-Liang Zhang; Toshiyuki Imamu
Название: Eigenvalue Problems: Algorithms, Software and Applications, in Petascale Computing
ISBN: 3319624245 ISBN-13(EAN): 9783319624242
Издательство: Springer
Рейтинг:
Цена: 25155.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book provides state-of-the-art and interdisciplinary topics on solving matrix eigenvalue problems, particularly by using recent petascale and upcoming post-petascale supercomputers.

Statistical DNA Forensics - Theory, Methods and Computation

Автор: Fung
Название: Statistical DNA Forensics - Theory, Methods and Computation
ISBN: 0470066369 ISBN-13(EAN): 9780470066362
Издательство: Wiley
Рейтинг:
Цена: 14723.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Statistical methodology plays a key role in ensuring that DNA evidence is collected, interpreted, analyzed, and presented correctly. With the recent advances in computer technology, this methodology is more complex than ever before. There are a growing number of books in the area but none are devoted to the computational analysis of evidence.

Bayesian Full Information Analysis of Simultaneous Equation Models Using Integration by Monte Carlo

Автор: L. Bauwens
Название: Bayesian Full Information Analysis of Simultaneous Equation Models Using Integration by Monte Carlo
ISBN: 3540133844 ISBN-13(EAN): 9783540133841
Издательство: Springer
Рейтинг:
Цена: 15372.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: In their review of the "Bayesian analysis of simultaneous equation systems", Dr ze and Richard (1983) - hereafter DR - express the following viewpoint about the present state of development of the Bayesian full information analysis of such sys- tems i) the method allows "a flexible specification of the prior density, including well defined noninformative prior measures"; ii) it yields "exact finite sample posterior and predictive densities". However, they call for further developments so that these densities can be eval- uated through 'numerical methods, using an integrated software packa e. To that end, they recommend the use of a Monte Carlo technique, since van Dijk and Kloek (1980) have demonstrated that "the integrations can be done and how they are done". In this monograph, we explain how we contribute to achieve the developments suggested by Dr ze and Richard. A basic idea is to use known properties of the porterior density of the param- eters of the structural form to design the importance functions, i. e. approximations of the posterior density, that are needed for organizing the integrations.

Bayesian and Frequentist Regression Methods

Автор: Wakefield
Название: Bayesian and Frequentist Regression Methods
ISBN: 1441909249 ISBN-13(EAN): 9781441909244
Издательство: Springer
Рейтинг:
Цена: 15372.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Bayesian and Frequentist Regression Methods provides a modern account of both Bayesian and frequentist methods of regression analysis.

Explorations in Monte Carlo Methods

Автор: Ronald W. Shonkwiler; Franklin Mendivil
Название: Explorations in Monte Carlo Methods
ISBN: 1489983791 ISBN-13(EAN): 9781489983794
Издательство: Springer
Рейтинг:
Цена: 6981.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Monte Carlo methods are among the most used and useful computational tools available, providing efficient and practical algorithms to solve a wide range of scientific and engineering problems. This book provides a hands-on approach to learning this subject.

Monte Carlo Methods in Bayesian Computation

Автор: Chen Ming-Hui, Shao Qi-Man, Ibrahim Joseph G.
Название: Monte Carlo Methods in Bayesian Computation
ISBN: 0387989358 ISBN-13(EAN): 9780387989358
Издательство: Springer
Рейтинг:
Цена: 20962.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book examines advanced Bayesian computational methods. It presents methods for sampling from posterior distributions and discusses how to compute posterior quantities of interest using Markov chain Monte Carlo (MCMC) samples. This book examines each of these issues in detail and heavily focuses on computing various posterior quantities of interest from a given MCMC sample. Several topics are addressed, including techniques for MCMC sampling, Monte Carlo methods for estimation of posterior quantities, improving simulation accuracy, marginal posterior density estimation, estimation of normalizing constants, constrained parameter problems, highest posterior density interval calculations, computation of posterior modes, and posterior computations for proportional hazards models and Dirichlet process models. The authors also discuss computions involving model comparisons, including both nested and non-nested models, marginal likelihood methods, ratios of normalizing constants, Bayes factors, the Savage-Dickey density ratio, Stochastic Search Variable Selection, Bayesian Model Averaging, the reverse jump algorithm, and model adequacy using predictive and latent residual approaches.The book presents an equal mixture of theory and applications involving real data. The book is intended as a graduate textbook or a reference book for a one semester course at the advanced masters or Ph.D. level. It would also serve as a useful reference book for applied or theoretical researchers as well as practitioners.Ming-Hui Chen is Associate Professor of Mathematical Sciences at Worcester Polytechnic Institute, Qu-Man Shao is Assistant Professor of Mathematics at the University of Oregon. Joseph G. Ibrahim is Associate Professor of Biostatistics at the Harvard School of Public Health and Dana-Farber Cancer Institute.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия