Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Outlier Ensembles, Charu C. Aggarwal; Saket Sathe


Варианты приобретения
Цена: 10480.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Charu C. Aggarwal; Saket Sathe
Название:  Outlier Ensembles
ISBN: 9783319547640
Издательство: Springer
Классификация:


ISBN-10: 331954764X
Обложка/Формат: Hardcover
Страницы: 276
Вес: 0.59 кг.
Дата издания: 18.04.2017
Язык: English
Издание: 1st ed. 2017
Иллюстрации: 10 tables, color; 9 illustrations, color; 46 illustrations, black and white; xvi, 276 p. 55 illus., 9 illus. in color.
Размер: 353 x 316 x 19
Читательская аудитория: Professional & vocational
Основная тема: Computer Science
Подзаголовок: An Introduction
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание: This book discusses a variety of methods for outlier ensembles and organizes them by the specific principles with which accuracy improvements are achieved. The authors cover how outlier ensembles relate (both theoretically and practically) to the ensemble techniques used commonly for other data mining problems like classification.


Ensembles in Machine Learning Applications

Автор: Oleg Okun; Giorgio Valentini; Matteo Re
Название: Ensembles in Machine Learning Applications
ISBN: 3662507064 ISBN-13(EAN): 9783662507063
Издательство: Springer
Рейтинг:
Цена: 16977.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book collects papers from the 3rd Workshop on Supervised and Unsupervised Ensemble Methods and their Applications (SUEMA), held as part of the 2010 European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases.

Applications of Supervised and Unsupervised Ensemble Methods

Автор: Oleg Okun
Название: Applications of Supervised and Unsupervised Ensemble Methods
ISBN: 3642039987 ISBN-13(EAN): 9783642039980
Издательство: Springer
Рейтинг:
Цена: 20962.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Expanding upon presentations at last year`s SUEMA (Supervised and Unsupervised Ensemble Methods and Applications) meeting, this volume explores recent developments in the field. Useful examples act as a guide for practitioners in computational intelligence.

Supervised and Unsupervised Ensemble Methods and their Applications

Автор: Oleg Okun
Название: Supervised and Unsupervised Ensemble Methods and their Applications
ISBN: 3540789804 ISBN-13(EAN): 9783540789802
Издательство: Springer
Рейтинг:
Цена: 20962.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Ensembles of Clustering Methods and Their Applications.- Cluster Ensemble Methods: from Single Clusterings to Combined Solutions.- Random Subspace Ensembles for Clustering Categorical Data.- Ensemble Clustering with a Fuzzy Approach.- Collaborative Multi-Strategical Clustering for Object-Oriented Image Analysis.- Ensembles of Classification Methods and Their Applications.- Intrusion Detection in Computer Systems Using Multiple Classifier Systems.- Ensembles of Nearest Neighbors for Gene Expression Based Cancer Classification.- Multivariate Time Series Classification via Stacking of Univariate Classifiers.- Gradient Boosting GARCH and Neural Networks for Time Series Prediction.- Cascading with VDM and Binary Decision Trees for Nominal Data.- Erratum.

Outlier Analysis

Автор: Charu C. Aggarwal
Название: Outlier Analysis
ISBN: 3319475770 ISBN-13(EAN): 9783319475776
Издательство: Springer
Рейтинг:
Цена: 9362.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

This book provides comprehensive coverage of the field of outlier analysis from a computer science point of view. It integrates methods from data mining, machine learning, and statistics within the computational framework and therefore appeals to multiple communities. The chapters of this book can be organized into three categories:
Basic algorithms: Chapters 1 through 7 discuss the fundamental algorithms for outlier analysis, including probabilistic and statistical methods, linear methods, proximity-based methods, high-dimensional (subspace) methods, ensemble methods, and supervised methods.Domain-specific methods: Chapters 8 through 12 discuss outlier detection algorithms for various domains of data, such as text, categorical data, time-series data, discrete sequence data, spatial data, and network data.Applications: Chapter 13 is devoted to various applications of outlier analysis. Some guidance is also provided for the practitioner.
The second edition of this book is more detailed and is written to appeal to both researchers and practitioners. Significant new material has been added on topics such as kernel methods, one-class support-vector machines, matrix factorization, neural networks, outlier ensembles, time-series methods, and subspace methods. It is written as a textbook and can be used for classroom teaching.
Fusion Methods for Unsupervised Learning Ensembles

Автор: Bruno Baruque
Название: Fusion Methods for Unsupervised Learning Ensembles
ISBN: 3642423280 ISBN-13(EAN): 9783642423284
Издательство: Springer
Рейтинг:
Цена: 18167.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book examines the potential of the ensemble meta-algorithm by describing and testing a technique based on the combination of ensembles and statistical PCA that is able to determine the presence of outliers in high-dimensional data sets.

Temporal Data Mining via Unsupervised Ensemble Learning

Автор: Yang Yun
Название: Temporal Data Mining via Unsupervised Ensemble Learning
ISBN: 0128116544 ISBN-13(EAN): 9780128116548
Издательство: Elsevier Science
Рейтинг:
Цена: 7241.00 р.
Наличие на складе: Поставка под заказ.

Описание: Temporal Data Mining via Unsupervised Ensemble Learning provides the principle knowledge of temporal data mining in association with unsupervised ensemble learning and the fundamental problems of temporal data clustering from different perspectives. By providing three proposed ensemble approaches of temporal data clustering, this book presents a practical focus of fundamental knowledge and techniques, along with a rich blend of theory and practice. . Furthermore, the book includes illustrations of the proposed approaches based on data and simulation experiments to demonstrate all methodologies, and is a guide to the proper usage of these methods. As there is nothing universal that can solve all problems, it is important to understand the characteristics of both clustering algorithms and the target temporal data so the correct approach can be selected for a given clustering problem. . Scientists, researchers, and data analysts working with machine learning and data mining will benefit from this innovative book, as will undergraduate and graduate students following courses in computer science, engineering, and statistics.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия