Data Mining and Big Data, Ying Tan; Hideyuki Takagi; Yuhui Shi
Автор: Foster Provost Название: Data Science For Business: What You Need To Know About Data Mining And Dataanalytic Thinking ISBN: 1449361323 ISBN-13(EAN): 9781449361327 Издательство: Wiley Рейтинг: Цена: 6334.00 р. Наличие на складе: Есть (1 шт.) Описание: This broad, deep, but not-too-technical guide introduces you to the fundamental principles of data science and walks you through the "data-analytic thinking" necessary for extracting useful knowledge and business value from the data you collect.
Описание: Churn prediction, recognition, and mitigation have become essential topics in various industries. As a means for forecasting and manageing risk, further research in this field can greatly assist companies in making informed decisions based on future possible scenarios.Developing Churn Models Using Data Mining Techniques and Social Network Analysis provides an in-depth analysis of attrition modeling relevant to business planning and management. Through its insightful and detailed explanation of best practices, tools, and theory surrounding churn prediction and the integration of analytics tools, this publication is especially relevant to managers, data specialists, business analysts, academicians, and upper-level students.
Автор: Tan Название: Data Mining and Big Data ISBN: 3319409727 ISBN-13(EAN): 9783319409726 Издательство: Springer Рейтинг: Цена: 11179.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The LNCS volume LNCS 9714 constitutes the refereed proceedings of the International Conference on Data Mining and Big Data, DMBD 2016, held in Bali, Indonesia, in June 2016. The 57 papers presented in this volume were carefully reviewed and selected from 115 submissions.
Автор: Wesley W. Chu Название: Data Mining and Knowledge Discovery for Big Data ISBN: 3662509458 ISBN-13(EAN): 9783662509456 Издательство: Springer Рейтинг: Цена: 18284.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book address topics ranging from mining data from opinion, spatiotemporal databases, discriminative subgraph patterns, path knowledge discovery, social media, and privacy issues to the subject of computation reduction via binary matrix factorization.
Автор: Brown Meta S. Название: Data Mining for Dummies ISBN: 1118893174 ISBN-13(EAN): 9781118893173 Издательство: Wiley Рейтинг: Цена: 5067.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Delve into your data for the key to success Data mining is quickly becoming integral to creating value and business momentum.
Автор: С.Aggarwal Название: Data Mining: The Textbook ISBN: 3319141414 ISBN-13(EAN): 9783319141411 Издательство: Springer Рейтинг: Цена: 9781.00 р. Наличие на складе: Поставка под заказ.
Описание: This textbook explores the different aspects of data mining from the fundamentals to the complex data types and their applications, capturing the wide diversity of problem domains for data mining issues.
Автор: Jiawei Han Название: Data Mining: Concepts and Techniques, ISBN: 0123814790 ISBN-13(EAN): 9780123814791 Издательство: Elsevier Science Рейтинг: Цена: 9720.00 р. Наличие на складе: Поставка под заказ.
Описание: Data Mining: Concepts and Techniques provides the concepts and techniques in processing gathered data or information, which will be used in various applications. Specifically, it explains data mining and the tools used in discovering knowledge from the collected data. This book is referred as the knowledge discovery from data (KDD). It focuses on the feasibility, usefulness, effectiveness, and scalability of techniques of large data sets. After describing data mining, this edition explains the methods of knowing, preprocessing, processing, and warehousing data. It then presents information about data warehouses, online analytical processing (OLAP), and data cube technology. Then, the methods involved in mining frequent patterns, associations, and correlations for large data sets are described. The book details the methods for data classification and introduces the concepts and methods for data clustering. The remaining chapters discuss the outlier detection and the trends, applications, and research frontiers in data mining. This book is intended for Computer Science students, application developers, business professionals, and researchers who seek information on data mining.
Описание: Like the popular second edition, Data Mining: Practical Machine Learning Tools and Techniques offers a thorough grounding in machine learning concepts as well as practical advice on applying machine learning tools and techniques in real-world data mining situations. Inside, you'll learn all you need to know about preparing inputs, interpreting outputs, evaluating results, and the algorithmic methods at the heart of successful data mining?including both tried-and-true techniques of today as well as methods at the leading edge of contemporary research. <br><br>Complementing the book is a fully functional platform-independent open source Weka software for machine learning, available for free download. <br><br>The book is a major revision of the second edition that appeared in 2005. While the basic core remains the same, it has been updated to reflect the changes that have taken place over the last four or five years. The highlights for the updated new edition include completely revised technique sections; new chapter on Data Transformations, new chapter on Ensemble Learning, new chapter on Massive Data Sets, a new ?book release? version of the popular Weka machine learning open source software (developed by the authors and specific to the Third Edition); new material on ?multi-instance learning?; new information on ranking the classification, plus comprehensive updates and modernization throughout. All in all, approximately 100 pages of new material.<br> <br><br>* Thorough grounding in machine learning concepts as well as practical advice on applying the tools and techniques<br><br>* Algorithmic methods at the heart of successful data mining?including tired and true methods as well as leading edge methods<br><br>* Performance improvement techniques that work by transforming the input or output<br><br>* Downloadable Weka, a collection of machine learning algorithms for data mining tasks, including tools for data pre-processing, classification, regression, clustering, association rules, and visualization?in an updated, interactive interface. <br>
Автор: Ratner Bruce Название: Statistical and Machine-Learning Data Mining ISBN: 1439860912 ISBN-13(EAN): 9781439860915 Издательство: Taylor&Francis Рейтинг: Цена: 9033.00 р. Наличие на складе: Нет в наличии.
Описание: Rev. ed. of: Statistical modeling and analysis for database marketing. c2003.
Автор: Chu Wesley W. Название: Data Mining and Knowledge Discovery for Big Data ISBN: 3642408362 ISBN-13(EAN): 9783642408366 Издательство: Springer Рейтинг: Цена: 20896.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book address topics ranging from mining data from opinion, spatiotemporal databases, discriminative subgraph patterns, path knowledge discovery, social media, and privacy issues to the subject of computation reduction via binary matrix factorization.
Автор: Cerquitelli, Tania, Quercia, Daniele, Pasquale, Frank (Eds.) Название: Transparent data mining for big and small data. ISBN: 3319540238 ISBN-13(EAN): 9783319540238 Издательство: Springer Рейтинг: Цена: 16769.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book focuses on new and emerging data mining solutions that offer a greater level of transparency than existing solutions.
Автор: Torgo Название: Data Mining with R ISBN: 1439810184 ISBN-13(EAN): 9781439810187 Издательство: Taylor&Francis Рейтинг: Цена: 9951.00 р. Наличие на складе: Нет в наличии.
Описание: This hands-on book uses practical examples to illustrate the power of R and data mining. Assuming no prior knowledge of R or data mining/statistical techniques, it covers a diverse set of problems that pose different challenges in terms of size, type of data, goals of analysis, and analytical tools. The main data mining processes and techniques are presented through detailed, real-world case studies. With these case studies, the author supplies all necessary steps, code, and data. Mirroring the do-it-yourself approach of the text, the supporting website provides data sets and R code.
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru