Machine Learning in Medical Imaging, Guorong Wu; Daoqiang Zhang; Luping Zhou
Автор: Trevor Hastie; Robert Tibshirani; Jerome Friedman Название: The Elements of Statistical Learning ISBN: 0387848576 ISBN-13(EAN): 9780387848570 Издательство: Springer Рейтинг: Цена: 10480.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This major new edition features many topics not covered in the original, including graphical models, random forests, and ensemble methods. As before, it covers the conceptual framework for statistical data in our rapidly expanding computerized world.
Автор: Kevin Murphy Название: Machine Learning ISBN: 0262018020 ISBN-13(EAN): 9780262018029 Издательство: MIT Press Рейтинг: Цена: 18622.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:
A comprehensive introduction to machine learning that uses probabilistic models and inference as a unifying approach.
Today's Web-enabled deluge of electronic data calls for automated methods of data analysis. Machine learning provides these, developing methods that can automatically detect patterns in data and then use the uncovered patterns to predict future data. This textbook offers a comprehensive and self-contained introduction to the field of machine learning, based on a unified, probabilistic approach.
The coverage combines breadth and depth, offering necessary background material on such topics as probability, optimization, and linear algebra as well as discussion of recent developments in the field, including conditional random fields, L1 regularization, and deep learning. The book is written in an informal, accessible style, complete with pseudo-code for the most important algorithms. All topics are copiously illustrated with color images and worked examples drawn from such application domains as biology, text processing, computer vision, and robotics. Rather than providing a cookbook of different heuristic methods, the book stresses a principled model-based approach, often using the language of graphical models to specify models in a concise and intuitive way. Almost all the models described have been implemented in a MATLAB software package -- PMTK (probabilistic modeling toolkit) -- that is freely available online. The book is suitable for upper-level undergraduates with an introductory-level college math background and beginning graduate students.
Автор: Kupinski, Ann Marie Название: Diagnostic Medical Sonography :Vascular Imaging ISBN: 1608313506 ISBN-13(EAN): 9781608313501 Издательство: Lippincott Williams & Wilkins Рейтинг: Цена: 13213.00 р. 18876.00-30% Наличие на складе: Есть (1 шт.) Описание: Lww'S Sonography Texts Are Up To Date With Technology, And The Needs Of Students And Faculty. Get The Right Content At The Right Level For The Right Way To Teach And Learn!Diagnostic Medical Sonography: Vascular Is The Most In-Depth, Appropriate Textbook To Cover This Type Of Ultrasound, And Is The Ideal Text For Sonography Students Pursuing A Greater Understanding Of This Specialization. Beginning With Core Anatomy Topics, This Text Is Aimed At Providing A Thorough Understanding Of This Crucial Topic, Giving It The Attention It Deserves, And Students And Faculty The Support They Want. As A Component Of The Diagnostic Medical Sonography Series, This Title Will Allow You To Provide A Comprehensive, Current, And Consistent Treatment Of Sonography Specializations In A Way You Were Never Able To Before.
Автор: Darren Cook Название: Practical Machine Learning with H2O ISBN: 149196460X ISBN-13(EAN): 9781491964606 Издательство: Wiley Рейтинг: Цена: 6334.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This hands-on guide teaches you how to use H20 with only minimal math and theory behind the learning algorithms.
Автор: Alpaydin Ethem Название: Machine Learning: The New AI ISBN: 0262529513 ISBN-13(EAN): 9780262529518 Издательство: MIT Press Рейтинг: Цена: 2700.00 р. Наличие на складе: Нет в наличии.
Описание:
A concise overview of machine learning -- computer programs that learn from data -- which underlies applications that include recommendation systems, face recognition, and driverless cars.
Today, machine learning underlies a range of applications we use every day, from product recommendations to voice recognition -- as well as some we don't yet use everyday, including driverless cars. It is the basis of the new approach in computing where we do not write programs but collect data; the idea is to learn the algorithms for the tasks automatically from data. As computing devices grow more ubiquitous, a larger part of our lives and work is recorded digitally, and as "Big Data" has gotten bigger, the theory of machine learning -- the foundation of efforts to process that data into knowledge -- has also advanced. In this book, machine learning expert Ethem Alpaydin offers a concise overview of the subject for the general reader, describing its evolution, explaining important learning algorithms, and presenting example applications.
Alpaydin offers an account of how digital technology advanced from number-crunching mainframes to mobile devices, putting today's machine learning boom in context. He describes the basics of machine learning and some applications; the use of machine learning algorithms for pattern recognition; artificial neural networks inspired by the human brain; algorithms that learn associations between instances, with such applications as customer segmentation and learning recommendations; and reinforcement learning, when an autonomous agent learns act so as to maximize reward and minimize penalty. Alpaydin then considers some future directions for machine learning and the new field of "data science," and discusses the ethical and legal implications for data privacy and security.
Описание: Quantum Machine Learning bridges the gap between abstract developments in quantum computing and the applied research on machine learning. Paring down the complexity of the disciplines involved, it focuses on providing a synthesis that explains the most important machine learning algorithms in a quantum framework. Theoretical advances in quantum computing are hard to follow for computer scientists, and sometimes even for researchers involved in the field. The lack of a step-by-step guide hampers the broader understanding of this emergent interdisciplinary body of research. . Quantum Machine Learning sets the scene for a deeper understanding of the subject for readers of different backgrounds. The author has carefully constructed a clear comparison of classical learning algorithms and their quantum counterparts, thus making differences in computational complexity and learning performance apparent. This book synthesizes of a broad array of research into a manageable and concise presentation, with practical examples and applications.
Автор: Conway Drew, White John Myles Название: Machine Learning for Hackers ISBN: 1449303714 ISBN-13(EAN): 9781449303716 Издательство: Wiley Рейтинг: Цена: 6334.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Now that storage and collection technologies are cheaper and more precise, methods for extracting relevant information from large datasets is within the reach any experienced programmer willing to crunch data.
Автор: Luping Zhou; Li Wang; Qian Wang; Yinghuan Shi Название: Machine Learning in Medical Imaging ISBN: 3319248871 ISBN-13(EAN): 9783319248875 Издательство: Springer Рейтинг: Цена: 7826.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book constitutes the proceedings of the 6th International Workshop on Machine Learning in Medical Imaging, MLMI 2015, held in conjunction with MICCAI 2015, in Munich in October 2015.
Автор: Kanwal Bhatia; Herve Lombaert Название: Machine Learning Meets Medical Imaging ISBN: 3319279289 ISBN-13(EAN): 9783319279282 Издательство: Springer Рейтинг: Цена: 5590.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The papers communicate thespecific needs and nuances of medical imaging to the machine learning communitywhile exposing the medical imaging community to current trends in machinelearning.
Автор: Barber Название: Bayesian Reasoning and Machine Learning ISBN: 0521518148 ISBN-13(EAN): 9780521518147 Издательство: Cambridge Academ Рейтинг: Цена: 11088.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This practical introduction for final-year undergraduate and graduate students is ideally suited to computer scientists without a background in calculus and linear algebra. Numerous examples and exercises are provided. Additional resources available online and in the comprehensive software package include computer code, demos and teaching materials for instructors.
Автор: Bekkerman Название: Scaling up Machine Learning ISBN: 0521192242 ISBN-13(EAN): 9780521192248 Издательство: Cambridge Academ Рейтинг: Цена: 14731.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: In many practical situations it is impossible to run existing machine learning methods on a single computer, because either the data is too large or the speed and throughput requirements are too demanding. Researchers and practitioners will find here a variety of machine learning methods developed specifically for parallel or distributed systems, covering algorithms, platforms and applications.
Автор: Mitchell Название: Machine Learning ISBN: 0071154671 ISBN-13(EAN): 9780071154673 Издательство: McGraw-Hill Рейтинг: Цена: 10466.00 р. Наличие на складе: Поставка под заказ.
Описание: Covers the field of machine learning, which is the study of algorithms that allow computer programs to automatically improve through experience. This book is intended to support upper level undergraduate and introductory level graduate courses in machine learning.
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru