Analysis and Algebra on Differentiable Manifolds, Pedro M. Gadea; Jaime Mu?oz Masqu?; Ihor V. Mykyty
Автор: Gadea Pedro Название: Analysis and Algebra on Differentiable Manifolds ISBN: 9400759517 ISBN-13(EAN): 9789400759510 Издательство: Springer Цена: 11878.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Автор: Frank W. Warner Название: Foundations of Differentiable Manifolds and Lie Groups ISBN: 1441928200 ISBN-13(EAN): 9781441928207 Издательство: Springer Рейтинг: Цена: 7680.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Foundations of Differentiable Manifolds and Lie Groups gives a clear, detailed, and careful development of the basic facts on manifold theory and Lie Groups. It includes differentiable manifolds, tensors and differentiable forms. Lie groups and homogenous spaces, integration on manifolds, and in addition provides a proof of the de Rham theorem via sheaf cohomology theory, and develops the local theory of elliptic operators culminating in a proof of the Hodge theorem. Those interested in any of the diverse areas of mathematics requiring the notion of a differentiable manifold will find this beginning graduate-level text extremely useful.
Автор: Serge Lang Название: Introduction to Differentiable Manifolds ISBN: 1441930191 ISBN-13(EAN): 9781441930194 Издательство: Springer Рейтинг: Цена: 7680.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book contains essential material that every graduate student must know. Written with Serge Lang's inimitable wit and clarity, the volume introduces the reader to manifolds, differential forms, Darboux's theorem, Frobenius, and all the central features of the foundations of differential geometry. Lang lays the basis for further study in geometric analysis, and provides a solid resource in the techniques of differential topology. The book will have a key position on my shelf. -Steven Krantz, Washington University in St. Louis This is an elementary, finite dimensional version of the author's classic monograph, Introduction to Differentiable Manifolds (1962), which served as the standard reference for infinite dimensional manifolds. It provides a firm foundation for a beginner's entry into geometry, topology, and global analysis. The exposition is unencumbered by unnecessary formalism, notational or otherwise, which is a pitfall few writers of introductory texts of the subject manage to avoid. The author's hallmark characteristics of directness, conciseness, and structural clarity are everywhere in evidence. A nice touch is the inclusion of more advanced topics at the end of the book, including the computation of the top cohomology group of a manifolds, a generalized divergence theorem of Gauss, and an elementary residue theorem of several complex variables. If getting to the main point of an argument or having the key ideas of a subject laid bare is important to you, then you would find the reading of this book a satisfying experience.
Автор: Wang Feng Yu Название: Analysis for Diffusion Processes on Riemannian Manifolds ISBN: 9814452645 ISBN-13(EAN): 9789814452649 Издательство: World Scientific Publishing Рейтинг: Цена: 19800.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Stochastic analysis on Riemannian manifolds without boundary has been well established. However, the analysis for reflecting diffusion processes and sub-elliptic diffusion processes is far from complete. This book contains recent advances in this direction along with new ideas and efficient arguments, which are crucial for further developments. Many results contained here (for example, the formula of the curvature using derivatives of the semigroup) are new among existing monographs even in the case without boundary.
Автор: S.S. Chern; F.R. Smith; Georges de Rham Название: Differentiable Manifolds ISBN: 3642617549 ISBN-13(EAN): 9783642617546 Издательство: Springer Рейтинг: Цена: 12577.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: In this work, I have attempted to give a coherent exposition of the theory of differential forms on a manifold and harmonic forms on a Riemannian space.
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru