Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Introduction to Differentiable Manifolds, Serge Lang


Варианты приобретения
Цена: 7680.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Serge Lang
Название:  Introduction to Differentiable Manifolds
ISBN: 9781441930194
Издательство: Springer
Классификация:

ISBN-10: 1441930191
Обложка/Формат: Paperback
Страницы: 250
Вес: 0.37 кг.
Дата издания: 03.12.2010
Серия: Universitext
Язык: English
Размер: 234 x 156 x 14
Основная тема: Mathematics
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание: This book contains essential material that every graduate student must know. Written with Serge Langs inimitable wit and clarity, the volume introduces the reader to manifolds, differential forms, Darbouxs theorem, Frobenius, and all the central features of the foundations of differential geometry. Lang lays the basis for further study in geometric analysis, and provides a solid resource in the techniques of differential topology. The book will have a key position on my shelf. -Steven Krantz, Washington University in St. Louis This is an elementary, finite dimensional version of the authors classic monograph, Introduction to Differentiable Manifolds (1962), which served as the standard reference for infinite dimensional manifolds. It provides a firm foundation for a beginners entry into geometry, topology, and global analysis. The exposition is unencumbered by unnecessary formalism, notational or otherwise, which is a pitfall few writers of introductory texts of the subject manage to avoid. The authors hallmark characteristics of directness, conciseness, and structural clarity are everywhere in evidence. A nice touch is the inclusion of more advanced topics at the end of the book, including the computation of the top cohomology group of a manifolds, a generalized divergence theorem of Gauss, and an elementary residue theorem of several complex variables. If getting to the main point of an argument or having the key ideas of a subject laid bare is important to you, then you would find the reading of this book a satisfying experience.


Introduction to manifolds

Автор: Tu, Loring W.
Название: Introduction to manifolds
ISBN: 1441973990 ISBN-13(EAN): 9781441973993
Издательство: Springer
Рейтинг:
Цена: 6986.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Manifolds, the higher-dimensional analogs of smooth curves and surfaces, are fundamental objects in modern mathematics. Combining aspects of algebra, topology, and analysis, manifolds have also been applied to classical mechanics, general relativity, and quantum field theory.

Foundations of Differentiable Manifolds and Lie Groups

Автор: Frank W. Warner
Название: Foundations of Differentiable Manifolds and Lie Groups
ISBN: 1441928200 ISBN-13(EAN): 9781441928207
Издательство: Springer
Рейтинг:
Цена: 7680.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Foundations of Differentiable Manifolds and Lie Groups gives a clear, detailed, and careful development of the basic facts on manifold theory and Lie Groups. It includes differentiable manifolds, tensors and differentiable forms. Lie groups and homogenous spaces, integration on manifolds, and in addition provides a proof of the de Rham theorem via sheaf cohomology theory, and develops the local theory of elliptic operators culminating in a proof of the Hodge theorem. Those interested in any of the diverse areas of mathematics requiring the notion of a differentiable manifold will find this beginning graduate-level text extremely useful.

Introduction to Geometry of Manifolds with Symmetry

Автор: V.V. Trofimov
Название: Introduction to Geometry of Manifolds with Symmetry
ISBN: 0792325613 ISBN-13(EAN): 9780792325611
Издательство: Springer
Рейтинг:
Цена: 15372.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Provides an introduction to the geometry of manifolds equipped with additional structures connected with the notion of symmetry. This volume presents the elements of differential geometry and is devoted to general topology, part to the theory of smooth manifolds, and the remaining sections deal with manifolds with additional structures.

Analysis and Algebra on Differentiable Manifolds

Автор: Pedro M. Gadea; Jaime Mu?oz Masqu?; Ihor V. Mykyty
Название: Analysis and Algebra on Differentiable Manifolds
ISBN: 9400793308 ISBN-13(EAN): 9789400793309
Издательство: Springer
Рейтинг:
Цена: 9776.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This new edition offers solved exercises on differentiable manifolds, Lie groups, fibre bundles and Riemannian manifolds. Includes exercises ranging from elementary computations to sophisticated tools, and studies solved problems of differentiable manifolds.

Differentiable Manifolds

Автор: S.S. Chern; F.R. Smith; Georges de Rham
Название: Differentiable Manifolds
ISBN: 3642617549 ISBN-13(EAN): 9783642617546
Издательство: Springer
Рейтинг:
Цена: 12577.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: In this work, I have attempted to give a coherent exposition of the theory of differential forms on a manifold and harmonic forms on a Riemannian space.

Analysis and Algebra on Differentiable Manifolds

Автор: Gadea Pedro
Название: Analysis and Algebra on Differentiable Manifolds
ISBN: 9400759517 ISBN-13(EAN): 9789400759510
Издательство: Springer
Цена: 11878.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия