Описание: 'Et moi, ..., si. j'avail su comment en revenir. One service mathematics has rendered be human race. It has put common sense back jc n'y scrais point a1U: where it belongs, on the topmost sbelf next Jules Verne to \be dusty canister labelled 'discarded non- TIle series is divergent; therefore we may be sense'. able to do something with it Eric T. Bell O. Heaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non- linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics .. .'; 'One service logic bas rendered com- puter science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d'etre of this series.
Автор: Alexandre B. Tsybakov Название: Introduction to Nonparametric Estimation ISBN: 0387790519 ISBN-13(EAN): 9780387790510 Издательство: Springer Рейтинг: Цена: 15372.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Presents basic nonparametric regression and density estimators and analyzes their properties. This book covers minimax lower bounds, and develops advanced topics such as: Pinsker`s theorem, oracle inequalities, Stein shrinkage, and sharp minimax adaptivity.
Автор: Muller, P., Quintana, F.A., Jara, A., Hanson, T. Название: Bayesian Nonparametric Data Analysis ISBN: 3319189670 ISBN-13(EAN): 9783319189673 Издательство: Springer Рейтинг: Цена: 11878.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book reviews nonparametric Bayesian methods and models that have proven useful in the context of data analysis. In selecting specific nonparametric models, simpler and more traditional models are favored over specialized ones.
Автор: Brodsky, E., Darkhovsky, B.S. Название: Nonparametric Methods in Change Point Problems ISBN: 0792321227 ISBN-13(EAN): 9780792321224 Издательство: Springer Рейтинг: Цена: 13275.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This volume deals with non-parametric methods of change point (disorder) detection in random processes and fields. A systematic account is given of up-to-date developments in this rapidly evolving branch of statistics.
Автор: Groeneboom Название: Nonparametric Estimation under Shape Constraints ISBN: 0521864011 ISBN-13(EAN): 9780521864015 Издательство: Cambridge Academ Рейтинг: Цена: 11880.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book treats the latest developments in the theory of order-restricted inference, with special attention to nonparametric methods and algorithmic aspects. Each chapter ends with a set of exercises of varying difficulty. The theory is illustrated with the analysis of real-life data, which are mostly medical in nature.
Автор: G.G Roussas Название: Nonparametric Functional Estimation and Related Topics ISBN: 0792312260 ISBN-13(EAN): 9780792312260 Издательство: Springer Рейтинг: Цена: 60933.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Автор: Pao-Liu Chow; Boris S. Mordukhovich; G. George Yin Название: Topics in Stochastic Analysis and Nonparametric Estimation ISBN: 1441925813 ISBN-13(EAN): 9781441925817 Издательство: Springer Рейтинг: Цена: 14673.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Khasminskii, on his seventy-fifth birthday, for his contributions to stochastic processes and nonparametric estimation theory an IMA participating institution conference entitled "Conference on Asymptotic Analysis in Stochastic Processes, Nonparametric Estimation, and Related Problems" was held.
Автор: Sam Efromovich Название: Nonparametric Curve Estimation ISBN: 1475773013 ISBN-13(EAN): 9781475773019 Издательство: Springer Рейтинг: Цена: 13974.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book gives a systematic, comprehensive, and unified account of modern nonparametric statistics of density estimation, nonparametric regression, filtering signals, and time series analysis.
Автор: Alexandre B. Tsybakov Название: Introduction to Nonparametric Estimation ISBN: 1441927093 ISBN-13(EAN): 9781441927095 Издательство: Springer Рейтинг: Цена: 15372.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Developed from lecture notes and ready to be used for a course on the graduate level, this concise text aims to introduce the fundamental concepts of nonparametric estimation theory while maintaining the exposition suitable for a first approach in the field.
Автор: Fan Jianqing, Yao Qiwei Название: Nonlinear Time Series / Nonparametric and Parametric Methods ISBN: 0387261427 ISBN-13(EAN): 9780387261423 Издательство: Springer Рейтинг: Цена: 15372.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book presents the contemporary statistical methods and theory of nonlinear time series analysis. The principal focus is on nonparametric and semiparametric techniques developed in the last decade. It covers the techniques for modelling in state-space, in frequency-domain as well as in time-domain. To reflect the integration of parametric and nonparametric methods in analyzing time series data, the book also presents an up-to-date exposure of some parametric nonlinear models, including ARCH/GARCH models and threshold models. A compact view on linear ARMA models is also provided. Data arising in real applications are used throughout to show how nonparametric approaches may help to reveal local structure in high-dimensional data. Important technical tools are also introduced. The book will be useful for graduate students, application-oriented time series analysts, and new and experienced researchers. It will have the value both within the statistical community and across a broad spectrum of other fields such as econometrics, empirical finance, population biology and ecology. The prerequisites are basic courses in probability and statistics. Jianqing Fan, coauthor of the highly regarded book Local Polynomial Modeling, is Professor of Statistics at the University of North Carolina at Chapel Hill and the Chinese University of Hong Kong. His published work on nonparametric modeling, nonlinear time series, financial econometrics, analysis of longitudinal data, model selection, wavelets and other aspects of methodological and theoretical statistics has been recognized with the Presidents' Award from the Committee of Presidents of Statistical Societies, the Hettleman Prize for Artistic and Scholarly Achievement from the University of North Carolina, and by his election as a fellow of the American Statistical Association and the Institute of Mathematical Statistics. Qiwei Yao is Professor of Statistics at the London School of Economics and Political Science. He is an elected member of the International Statistical Institute, and has served on the editorial boards for the Journal of the Royal Statistical Society (Series B) and the Australian and New Zealand Journal of Statistics.
Автор: Klaus Nordhausen; Sara Taskinen Название: Modern Nonparametric, Robust and Multivariate Methods ISBN: 3319361295 ISBN-13(EAN): 9783319361291 Издательство: Springer Рейтинг: Цена: 15372.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Written by leading experts in the field, this edited volume brings together the latest findings in the area of nonparametric, robust and multivariate statistical methods. The individual contributions cover a wide variety of topics ranging from univariate nonparametric methods to robust methods for complex data structures.
Автор: Ghosal, Subhashis. Название: Fundamentals of Nonparametric Bayesian Inference ISBN: 0521878268 ISBN-13(EAN): 9780521878265 Издательство: Cambridge Academ Рейтинг: Цена: 12989.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Written by top researchers, this self-contained text is the authoritative account of Bayesian nonparametrics, a nearly universal framework for inference in statistics and machine learning, with practical use in all areas of science, including economics and biostatistics. Appendices with prerequisites and numerous exercises support its use for graduate courses.
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru