Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Hardy Classes on Infinitely Connected Riemann Surfaces, M. Hasumi


Варианты приобретения
Цена: 4884.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: M. Hasumi
Название:  Hardy Classes on Infinitely Connected Riemann Surfaces
ISBN: 9783540127291
Издательство: Springer
Классификация:

ISBN-10: 3540127291
Обложка/Формат: Paperback
Страницы: 282
Вес: 0.42 кг.
Дата издания: 01.10.1983
Серия: Lecture Notes in Mathematics
Язык: English
Размер: 234 x 156 x 16
Основная тема: Mathematics
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии


Riemann`s Boundary Problem with Infinite Index

Автор: I.V. Ostrovskii; I.V. Ostrovskii; Yu.I. Lyubarskii
Название: Riemann`s Boundary Problem with Infinite Index
ISBN: 3034896557 ISBN-13(EAN): 9783034896559
Издательство: Springer
Рейтинг:
Цена: 13974.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: PREFACE The classic statement of the Riemann boundary problem consists in finding a function (z) which is analytic and bounded in two domains D+ and D-, with a common boundary - a smooth closed contour L admitting a continuous extension onto L both from D+ and D- and satisfying on L the boundary condition +(t) = G(t)-(t) + g(t).

Riemann`s Boundary Problem with Infinite Index

Автор: I.V. Ostrovskii; I.V. Ostrovskii; Yu.I. Lyubarskii
Название: Riemann`s Boundary Problem with Infinite Index
ISBN: 3764329998 ISBN-13(EAN): 9783764329990
Издательство: Springer
Рейтинг:
Цена: 22354.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: PREFACE The classic statement of the Riemann boundary problem consists in finding a function (z) which is analytic and bounded in two domains D+ and D-, with a common boundary - a smooth closed contour L admitting a continuous extension onto L both from D+ and D- and satisfying on L the boundary condition +(t) = G(t)-(t) + g(t).

Extremal Polynomials and Riemann Surfaces

Автор: Andrei Bogatyrev; Nikolai Kruzhilin
Название: Extremal Polynomials and Riemann Surfaces
ISBN: 364244332X ISBN-13(EAN): 9783642443329
Издательство: Springer
Рейтинг:
Цена: 13275.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book develops the classical Chebyshev`s approach which gives analytical representation for the solution in terms of Riemann surfaces. It includes numerous problems, exercises, and illustrations.

Dessins d`Enfants on Riemann Surfaces

Автор: Jones, Gareth A., Wolfart, J?rgen
Название: Dessins d`Enfants on Riemann Surfaces
ISBN: 3319247093 ISBN-13(EAN): 9783319247090
Издательство: Springer
Рейтинг:
Цена: 11878.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This volume provides an introduction to dessins d`enfants and embeddings of bipartite graphs in compact Riemann surfaces.

Lectures on Riemann Surfaces

Автор: Bruce Gilligan; Otto Forster
Название: Lectures on Riemann Surfaces
ISBN: 0387906177 ISBN-13(EAN): 9780387906171
Издательство: Springer
Рейтинг:
Цена: 9357.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Based on the lectures on Riemann surfaces given by Otto Forster at the universities of Munich, Regensburg, and Munster, this book provides a modern introduction to this subject, presenting methods used in the study of complex manifolds in the special case of complex dimension one.

Computational Approach to Riemann Surfaces

Автор: Bobenko
Название: Computational Approach to Riemann Surfaces
ISBN: 3642174124 ISBN-13(EAN): 9783642174124
Издательство: Springer
Рейтинг:
Цена: 6282.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This volume offers a well-structured overview of existent computational approaches to Riemann surfaces and those currently in development. The authors of the contributions represent the groups providing publically available numerical codes in this field. Thus this volume illustrates which software tools are available and how they can be used in practice. In addition examples for solutions to partial differential equations and in surface theory are presented. The intended audience of this book is twofold. It can be used as a textbook for a graduate course in numerics of Riemann surfaces, in which case the standard undergraduate background, i.e., calculus and linear algebra, is required. In particular, no knowledge of the theory of Riemann surfaces is expected; the necessary background in this theory is contained in the Introduction chapter. At the same time, this book is also intended for specialists in geometry and mathematical physics applying the theory of Riemann surfaces in their research. It is the first book on numerics of Riemann surfaces that reflects the progress made in this field during the last decade, and it contains original results. There are a growing number of applications that involve the evaluation of concrete characteristics of models analytically described in terms of Riemann surfaces. Many problem settings and computations in this volume are motivated by such concrete applications in geometry and mathematical physics.

Lectures on Riemann Surfaces: Jacobi Varieties

Автор: Gunning Robert C.
Название: Lectures on Riemann Surfaces: Jacobi Varieties
ISBN: 0691619255 ISBN-13(EAN): 9780691619255
Издательство: Wiley
Рейтинг:
Цена: 5544.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: A sequel to Lectures on Riemann Surfaces (Mathematical Notes, 1966), this volume continues the discussion of the dimensions of spaces of holomorphic cross-sections of complex line bundles over compact Riemann surfaces. Whereas the earlier treatment was limited to results obtainable chiefly by one-dimensional methods, the more detailed analysis pres

L?vy Processes and Infinitely Divisible Distributions

Автор: Sato
Название: L?vy Processes and Infinitely Divisible Distributions
ISBN: 1107656494 ISBN-13(EAN): 9781107656499
Издательство: Cambridge Academ
Рейтинг:
Цена: 11246.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This successful text provides a comprehensive basic knowledge of Levy processes and serves as an introduction to stochastic processes in general. Now in paperback, this corrected edition contains a brand new supplement discussing relevant developments in the area since the book`s initial publication.

Hardy Classes on Riemann Surfaces

Автор: Maurice Heins
Название: Hardy Classes on Riemann Surfaces
ISBN: 3540046178 ISBN-13(EAN): 9783540046172
Издательство: Springer
Рейтинг:
Цена: 3487.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Classification Theory of Riemann Surfaces

Автор: Leo Sario; Mitsuru Nakai
Название: Classification Theory of Riemann Surfaces
ISBN: 3642482716 ISBN-13(EAN): 9783642482717
Издательство: Springer
Рейтинг:
Цена: 13974.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The type problem evolved in the following somewhat overlapping steps: the Riemann mapping theorem, the classical type problem, and the existence of Green`s functions.

Generalized Analytic Functions on Riemann Surfaces

Автор: Yuri L. Rodin
Название: Generalized Analytic Functions on Riemann Surfaces
ISBN: 3540185720 ISBN-13(EAN): 9783540185727
Издательство: Springer
Рейтинг:
Цена: 3487.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Spectral Theory of Infinite-Area Hyperbolic Surfaces

Автор: Borthwick
Название: Spectral Theory of Infinite-Area Hyperbolic Surfaces
ISBN: 3319338757 ISBN-13(EAN): 9783319338750
Издательство: Springer
Рейтинг:
Цена: 15372.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This text introduces geometric spectral theory in the context of infinite-area Riemann surfaces, providing a comprehensive account of the most recent developments in the field. For the second edition the context has been extended to general surfaces with hyperbolic ends, which provides a natural setting for development of the spectral theory while still keeping technical difficulties to a minimum. All of the material from the first edition is included and updated, and new sections have been added.Topics covered include an introduction to the geometry of hyperbolic surfaces, analysis of the resolvent of the Laplacian, scattering theory, resonances and scattering poles, the Selberg zeta function, the Poisson formula, distribution of resonances, the inverse scattering problem, Patterson-Sullivan theory, and the dynamical approach to the zeta function. The new sections cover the latest developments in the field, including the spectral gap, resonance asymptotics near the critical line, and sharp geometric constants for resonance bounds. A new chapter introduces recently developed techniques for resonance calculation that illuminate the existing results and conjectures on resonance distribution.The spectral theory of hyperbolic surfaces is a point of intersection for a great variety of areas, including quantum physics, discrete groups, differential geometry, number theory, complex analysis, and ergodic theory. This book will serve as a valuable resource for graduate students and researchers from these and other related fields. Review of the first edition:'The exposition is very clear and thorough, and essentially self-contained; the proofs are detailed...The book gathers together some material which is not always easily available in the literature...To conclude, the book is certainly at a level accessible to graduate students and researchers from a rather large range of fields. Clearly, the reader...would certainly benefit greatly from it.' (Colin Guillarmou, Mathematical Reviews, Issue 2008 h)


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия