Limit Theorems for the Riemann Zeta-Function, Antanas Laurincikas
Автор: Motohashi Название: Spectral Theory of the Riemann Zeta-Function ISBN: 0521058074 ISBN-13(EAN): 9780521058070 Издательство: Cambridge Academ Рейтинг: Цена: 8554.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Professor Motohashi shows that the Riemann zeta function is closely bound with automorphic forms and that many results from there can be woven with techniques and ideas from analytic number theory to yield new insights into, and views of, the function itself.
Описание: The collected works, in German, of the groundbreaking mathematician Bernhard Riemann (1826-66) first appeared in 1876. Included here is his famous 1854 lecture `On the hypotheses which underlie geometry`, which set in motion studies which culminated in Einstein`s general theory of relativity.
Автор: Dudley Название: Uniform Central Limit Theorems ISBN: 0521738415 ISBN-13(EAN): 9780521738415 Издательство: Cambridge Academ Рейтинг: Цена: 7762.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This second edition of a classic work has been considerably expanded and revised, now with complete proofs of all results, including several new theorems not included in the first edition, such as Talagrand`s generic chaining approach to boundedness of Gaussian processes and Gine and Zinn`s characterization of uniform Donsker classes.
Автор: Jacod Jean, Shiryaev Albert N. Название: Limit Theorems for Stochastic Processes ISBN: 3540439323 ISBN-13(EAN): 9783540439325 Издательство: Springer Рейтинг: Цена: 18167.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Initially the theory of convergence in law of stochastic processes was developed quite independently from the theory of martingales, semimartingales and stochastic integrals. Apart from a few exceptions essentially concerning diffusion processes, it is only recently that the relation between the two theories has been thoroughly studied. The authors of this Grundlehren volume, two of the international leaders in the field, propose a systematic exposition of convergence in law for stochastic processes, from the point of view of semimartingale theory, with emphasis on results that are useful for mathematical theory and mathematical statistics. This leads them to develop in detail some particularly useful parts of the general theory of stochastic processes, such as martingale problems, and absolute continuity or contiguity results. The book contains an introduction to the theory of martingales and semimartingales, random measures stochastic integrales, Skorokhod topology, etc., as well as a large number of results which have never appeared in book form, and some entirely new results. The second edition contains some additions to the text and references. Some parts are completely rewritten.
Автор: V. Bentkus; Yu.V. Prokhorov; B. Seckler; V. Statul Название: Limit Theorems of Probability Theory ISBN: 3642081703 ISBN-13(EAN): 9783642081705 Издательство: Springer Рейтинг: Цена: 20956.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book consists of five parts written by different authors devoted to various problems dealing with probability limit theorems. The first part, "Classical-Type Limit Theorems for Sums ofIndependent Random Variables" (V.v. Petrov), presents a number of classical limit theorems for sums of independent random variables as well as newer related results. The presentation dwells on three basic topics: the central limit theorem, laws of large numbers and the law of the iterated logarithm for sequences of real-valued random variables. The second part, "The Accuracy of Gaussian Approximation in Banach Spaces" (V. Bentkus, F. G6tze, V. Paulauskas and A. Rackauskas), reviews various results and methods used to estimate the convergence rate in the central limit theorem and to construct asymptotic expansions in infinite-dimensional spaces. The authors con- fine themselves to independent and identically distributed random variables. They do not strive to be exhaustive or to obtain the most general results; their aim is merely to point out the differences from the finite-dimensional case and to explain certain new phenomena related to the more complex structure of Banach spaces. Also reflected here is the growing tendency in recent years to apply results obtained for Banach spaces to asymptotic problems of statistics.
Автор: Antanas Laurincikas Название: Limit Theorems for the Riemann Zeta-Function ISBN: 0792338243 ISBN-13(EAN): 9780792338246 Издательство: Springer Рейтинг: Цена: 15372.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This volume presents a range of results in analytic and probabilistic number theory. The full spectrum of limit theorems in the sense of weak convergence of probability measures for the modules of the Riemann zeta-function and other functions is given by Dirichlet series.
Автор: Hugh Montgomery; Ashkan Nikeghbali; Michael Th. Ra Название: Exploring the Riemann Zeta Function ISBN: 3319599682 ISBN-13(EAN): 9783319599687 Издательство: Springer Рейтинг: Цена: 15372.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:
Exploring the Riemann Zeta Function: 190 years from Riemann's Birth presents a collection of chapters contributed by eminent experts devoted to the Riemann Zeta Function, its generalizations, and their various applications to several scientific disciplines, including Analytic Number Theory, Harmonic Analysis, Complex Analysis, Probability Theory, and related subjects.
The book focuses on both old and new results towards the solution of long-standing problems as well as it features some key historical remarks. The purpose of this volume is to present in a unified way broad and deep areas of research in a self-contained manner. It will be particularly useful for graduate courses and seminars as well as it will make an excellent reference tool for graduate students and researchers in Mathematics, Cryptography, Mathematical Physics, and Engineering.
Автор: Coates Название: The Bloch–Kato Conjecture for the Riemann Zeta Function ISBN: 1107492963 ISBN-13(EAN): 9781107492967 Издательство: Cambridge Academ Рейтинг: Цена: 9029.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: An account of a significant body of recent work that resolves some long-standing mysteries concerning special values of the Riemann zeta function. It brings together many important results from K-theory, motivic cohomology, and Iwasawa theory, accessible at graduate level and above.
Описание: After the pioneering works by Robbins {1944, 1945) and Choquet (1955), the notation of a set-valued random variable (called a random closed set in literatures) was systematically introduced by Kendall {1974) and Matheron {1975).
Автор: Marc Hallin; David M. Mason; Dietmar Pfeifer; Jose Название: Mathematical Statistics and Limit Theorems ISBN: 3319353942 ISBN-13(EAN): 9783319353944 Издательство: Springer Рейтинг: Цена: 11878.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This Festschrift in honour of Paul Deheuvels` 65th birthday compiles recent research results in the area between mathematical statistics and probability theory with a special emphasis on limit theorems.
Автор: Wang Qiying Название: Limit Theorems For Nonlinear Cointegrating Regression ISBN: 9814675628 ISBN-13(EAN): 9789814675628 Издательство: World Scientific Publishing Рейтинг: Цена: 15523.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book provides the limit theorems that can be used in the development of nonlinear cointegrating regression.
Автор: Hдusler Erich Название: Stable Convergence and Stable Limit Theorems ISBN: 3319183281 ISBN-13(EAN): 9783319183282 Издательство: Springer Рейтинг: Цена: 11878.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The authors present a concise but complete exposition of the mathematical theory of stable convergence and give various applications in different areas of probability theory and mathematical statistics to illustrate the usefulness of this concept.
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru