Shapes, either from the natural world or man-made, are more and more digitized for visualization or measurement purposes, among others. This process results in general in 3D surface meshes, composed of collections of planar polygons. Such meshes nowadays are the most common discrete representation of the surface of a virtual shape. These 3D surface meshes are automatically, or sometimes interactively, examined, in order their overall structure or some details to be understood or evaluated. This can be done by extracting relevant geometric or topological features. Such shape characteristics can simplify the way the object is looked at, can help recognition, and can describe and categorize it according to specific criteria.
This book deals with feature definition and computation on a 3D surface mesh, and their use for shape analysis. Recent methods are described to extract feature lines having a meaning related not only to geometry but to topology as well. Differential estimators like discrete principal curvatures are detailed as they play a critical role for the computation of salient structures. Several applications are developed, and each of them needs specific adjustments to generic approaches. These applications are related to geology, planetary science, paleo-anthropology, astrophysics, medicine, and forestry.
Автор: Huan Liu; Hiroshi Motoda Название: Feature Extraction, Construction and Selection ISBN: 0792381963 ISBN-13(EAN): 9780792381969 Издательство: Springer Рейтинг: Цена: 40389.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Data pre-processing is an essential step in the knowledge discovery process for real-world applications. This book compiles contributions from researchers in this field and offers the techniques that can boost the capabilities of many data mining tools. It is suitable for researchers and graduate students in machine learning and data mining.
Описание: This book reports on an outstanding thesis thathas significantly advanced the state-of-the-art in the automated analysis andclassification of speech and music.
Автор: Isabelle Guyon; Steve Gunn; Masoud Nikravesh; Loft Название: Feature Extraction ISBN: 366251771X ISBN-13(EAN): 9783662517710 Издательство: Springer Рейтинг: Цена: 41787.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book is both a reference for engineers and scientists and a teaching resource, featuring tutorial chapters and research papers on feature extraction. Until now there has been insufficient consideration of feature selection algorithms, no unified presentation of leading methods, and no systematic comparisons.
Автор: Basant Agarwal; Namita Mittal Название: Prominent Feature Extraction for Sentiment Analysis ISBN: 3319253417 ISBN-13(EAN): 9783319253411 Издательство: Springer Рейтинг: Цена: 18284.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:
1 Introduction
2 Literature Survey
3 Machine Learning Approach for Sentiment Analysis
4 Semantic Parsing using Dependency Rules
5 Sentiment Analysis using ConceptNet Ontology and Context
Information
6 Semantic Orientation based Approach for Sentiment Analysis
Описание: Different structures of the neuro-fuzzy classifier are also comparatively analyzed to find the optimum structure of the classifier used.
Автор: Urszula Sta?czyk; Lakhmi C. Jain Название: Feature Selection for Data and Pattern Recognition ISBN: 3662456192 ISBN-13(EAN): 9783662456194 Издательство: Springer Рейтинг: Цена: 20896.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This research book provides the reader with a selection of high-quality texts dedicated to current progress, new developments and research trends in feature selection for data and pattern recognition.
Автор: Ver?nica Bol?n-Canedo; Noelia S?nchez-Maro?o; Ampa Название: Feature Selection for High-Dimensional Data ISBN: 3319218573 ISBN-13(EAN): 9783319218571 Издательство: Springer Рейтинг: Цена: 13974.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Introduction to High-Dimensionality.- Foundations of Feature Selection.- Experimental Framework.- Critical Review of Feature Selection Methods.- Application of Feature Selection to Real Problems.- Emerging Challenges.
Автор: Urszula Sta?czyk; Lakhmi C. Jain Название: Feature Selection for Data and Pattern Recognition ISBN: 3662508451 ISBN-13(EAN): 9783662508459 Издательство: Springer Рейтинг: Цена: 18284.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This research book provides the reader with a selection of high-quality texts dedicated to current progress, new developments and research trends in feature selection for data and pattern recognition.
Автор: Huan Liu; Hiroshi Motoda Название: Feature Selection for Knowledge Discovery and Data Mining ISBN: 079238198X ISBN-13(EAN): 9780792381983 Издательство: Springer Рейтинг: Цена: 37594.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Shows the essence of representative feature selection methods and compares them using data sets with combinations of intrinsic properties according to the objective of feature selection. This book suggests guidelines on how to use different methods under various circumstances and points challenges in this area. It is intended as a reference book.
Автор: Craig Saunders; Marko Grobelnik; Steve Gunn; John Название: Subspace, Latent Structure and Feature Selection ISBN: 3540341374 ISBN-13(EAN): 9783540341376 Издательство: Springer Рейтинг: Цена: 9083.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Constitutes the refereed post-proceedings of the PASCAL (pattern analysis, statistical modelling and computational learning) Statistical and Optimization Perspectives Workshop on Subspace, Latent Structure and Feature Selection techniques, SLSFS 2005.
Автор: Huan Liu; Hiroshi Motoda Название: Feature Selection for Knowledge Discovery and Data Mining ISBN: 1461376041 ISBN-13(EAN): 9781461376040 Издательство: Springer Рейтинг: Цена: 46118.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru