Numerical Bayesian Methods Applied to Signal Processing, Joseph J.K. O Ruanaidh; William J. Fitzgerald
Автор: LeVeque Randall J. Название: Numerical Methods for Conservation Laws ISBN: 3764327235 ISBN-13(EAN): 9783764327231 Издательство: Springer Рейтинг: Цена: 5589.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: These notes were developed for a graduate-level course on the theory and numerical solution of nonlinear hyperbolic systems of conservation laws. Part I deals with the basic mathematical theory of the equations: the notion of weak solutions, entropy conditions, and a detailed description of the wave structure of solutions to the Riemann problem. The emphasis is on tools and techniques that are indispensable in developing good numerical methods for discontinuous solutions. Part II is devoted to the development of high resolution shock-capturing methods, including the theory of total variation diminishing (TVD) methods and the use of limiter functions. The book is intended for a wide audience, and will be of use both to numerical analysts and to computational researchers in a variety of applications.
Автор: Chen Ming-Hui, Shao Qi-Man, Ibrahim Joseph G. Название: Monte Carlo Methods in Bayesian Computation ISBN: 0387989358 ISBN-13(EAN): 9780387989358 Издательство: Springer Рейтинг: Цена: 20962.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book examines advanced Bayesian computational methods. It presents methods for sampling from posterior distributions and discusses how to compute posterior quantities of interest using Markov chain Monte Carlo (MCMC) samples. This book examines each of these issues in detail and heavily focuses on computing various posterior quantities of interest from a given MCMC sample. Several topics are addressed, including techniques for MCMC sampling, Monte Carlo methods for estimation of posterior quantities, improving simulation accuracy, marginal posterior density estimation, estimation of normalizing constants, constrained parameter problems, highest posterior density interval calculations, computation of posterior modes, and posterior computations for proportional hazards models and Dirichlet process models. The authors also discuss computions involving model comparisons, including both nested and non-nested models, marginal likelihood methods, ratios of normalizing constants, Bayes factors, the Savage-Dickey density ratio, Stochastic Search Variable Selection, Bayesian Model Averaging, the reverse jump algorithm, and model adequacy using predictive and latent residual approaches.The book presents an equal mixture of theory and applications involving real data. The book is intended as a graduate textbook or a reference book for a one semester course at the advanced masters or Ph.D. level. It would also serve as a useful reference book for applied or theoretical researchers as well as practitioners.Ming-Hui Chen is Associate Professor of Mathematical Sciences at Worcester Polytechnic Institute, Qu-Man Shao is Assistant Professor of Mathematics at the University of Oregon. Joseph G. Ibrahim is Associate Professor of Biostatistics at the Harvard School of Public Health and Dana-Farber Cancer Institute.
Автор: Wakefield Название: Bayesian and Frequentist Regression Methods ISBN: 1441909249 ISBN-13(EAN): 9781441909244 Издательство: Springer Рейтинг: Цена: 15372.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Bayesian and Frequentist Regression Methods provides a modern account of both Bayesian and frequentist methods of regression analysis.
Автор: Troyan Vladimir & Kiselev Yurii Название: Statistical Methods Of Geophysical Data Processing ISBN: 9814293741 ISBN-13(EAN): 9789814293747 Издательство: World Scientific Publishing Рейтинг: Цена: 22968.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Contains a consideration of the wide field of problems connected with statistical methods of processing of observed data, with the main examples and considered models related to geophysics and seismic exploration. This textbook includes many important topics, which are the basis for statistical methods of estimation and inverse problem solutions.
Автор: Jeffrey H. Dorfman Название: Bayesian Economics Through Numerical Methods ISBN: 1475771029 ISBN-13(EAN): 9781475771022 Издательство: Springer Рейтинг: Цена: 6986.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Providing researchers in economics, finance, and statistics with an up-to-date introduction to applying Bayesian techniques to empirical studies, this book covers the full range of the new numerical techniques which have been developed over the last thirty years.
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru