Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics, Leonardo Vanneschi; William S. Bush; Mario Giacobi


Варианты приобретения
Цена: 6429.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Leonardo Vanneschi; William S. Bush; Mario Giacobi
Название:  Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics
ISBN: 9783642371882
Издательство: Springer
Классификация: ISBN-10: 3642371884
Обложка/Формат: Paperback
Страницы: 217
Вес: 0.33 кг.
Дата издания: 19.03.2013
Серия: Theoretical Computer Science and General Issues
Язык: English
Размер: 234 x 156 x 12
Основная тема: Computer Science
Подзаголовок: 11th European Conference, EvoBIO 2013, Vienna, Austria, April 3-5, 2013, Proceedings
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание: Multiple Threshold Spatially Uniform ReliefF for the Genetic Analysis of Complex Human Diseases.- Time-Point Specific Weighting Improves Coexpression Networks from Time-Course Experiments.- Inferring Human Phenotype Networks from Genome-Wide Genetic.- Knowledge-Constrained K-Medoids Clustering of Regulatory Rare Alleles for Burden Tests.- Feature Selection and Classification of High Dimensional Mass Spectrometry Data: A Genetic Programming Approach.- Structured Populations and the Maintenance of Sex.- Hybrid Multiobjective Artificial Bee Colony with Differential Evolution Applied to Motif Finding.- ACO-Based Bayesian Network Ensembles for the Hierarchical Classification of Ageing-Related Proteins.- Dimensionality Reduction via Isomap with Lock-Step and Elastic Measures for Time Series Gene Expression Classification.- Supervising Random Forest Using Attribute Interaction Networks.- Hybrid Genetic Algorithms for Stress Recognition in Optimal Use of Biological Expert Knowledge from Literature.- Mining in Ant Colony Optimization for Analysis of Epistasis in Human Disease.- A Multiobjective Proposal Based on the Firefly Algorithm for Inferring Phylogenies.- Mining for Variability in the Coagulation Pathway: A Systems Biology Approach.- Improving the Performance of CGPANN for Breast Cancer Diagnosis Using Crossover and Radial Basis Functions.- An Evolutionary Approach to Wetlands Design.- Impact of Different Recombination Methods in a Mutation-Specific MOEA for a Biochemical Application.- Cell-Based Metrics Improve the Detection of Gene-Gene Interactions Using Multifactor Dimensionality Reduction.- Emergence of Motifs in Model Gene Regulatory Networks.


Pattern Recognition and Machine Learning

Автор: Christopher M. Bishop
Название: Pattern Recognition and Machine Learning
ISBN: 0387310738 ISBN-13(EAN): 9780387310732
Издательство: Springer
Рейтинг:
Цена: 11878.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Familiarity with multivariate calculus and basic linear algebra is required, and some experience in the use of probabilities would be helpful though not essential as the book includes a self-contained introduction to basic probability theory.

Fundamentals of Machine Learning for Predictive Data Analytics: Algorithms, Worked Examples, and Case Studies

Автор: Kelleher John D., Macnamee Brian, D`Arcy Aoife
Название: Fundamentals of Machine Learning for Predictive Data Analytics: Algorithms, Worked Examples, and Case Studies
ISBN: 0262029448 ISBN-13(EAN): 9780262029445
Издательство: MIT Press
Рейтинг:
Цена: 13543.00 р.
Наличие на складе: Нет в наличии.

Описание:

A comprehensive introduction to the most important machine learning approaches used in predictive data analytics, covering both theoretical concepts and practical applications.

Machine learning is often used to build predictive models by extracting patterns from large datasets. These models are used in predictive data analytics applications including price prediction, risk assessment, predicting customer behavior, and document classification. This introductory textbook offers a detailed and focused treatment of the most important machine learning approaches used in predictive data analytics, covering both theoretical concepts and practical applications. Technical and mathematical material is augmented with explanatory worked examples, and case studies illustrate the application of these models in the broader business context.

After discussing the trajectory from data to insight to decision, the book describes four approaches to machine learning: information-based learning, similarity-based learning, probability-based learning, and error-based learning. Each of these approaches is introduced by a nontechnical explanation of the underlying concept, followed by mathematical models and algorithms illustrated by detailed worked examples. Finally, the book considers techniques for evaluating prediction models and offers two case studies that describe specific data analytics projects through each phase of development, from formulating the business problem to implementation of the analytics solution. The book, informed by the authors' many years of teaching machine learning, and working on predictive data analytics projects, is suitable for use by undergraduates in computer science, engineering, mathematics, or statistics; by graduate students in disciplines with applications for predictive data analytics; and as a reference for professionals.

Data Mining. Practical Machine Learning Tools and Techniques, 4 ed.

Автор: Witten, Ian H.
Название: Data Mining. Practical Machine Learning Tools and Techniques, 4 ed.
ISBN: 0128042915 ISBN-13(EAN): 9780128042915
Издательство: Elsevier Science
Рейтинг:
Цена: 9262.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

Data Mining: Practical Machine Learning Tools and Techniques, Fourth Edition, offers a thorough grounding in machine learning concepts, along with practical advice on applying these tools and techniques in real-world data mining situations. This highly anticipated fourth edition of the most acclaimed work on data mining and machine learning teaches readers everything they need to know to get going, from preparing inputs, interpreting outputs, evaluating results, to the algorithmic methods at the heart of successful data mining approaches.

Extensive updates reflect the technical changes and modernizations that have taken place in the field since the last edition, including substantial new chapters on probabilistic methods and on deep learning. Accompanying the book is a new version of the popular WEKA machine learning software from the University of Waikato. Authors Witten, Frank, Hall, and Pal include today's techniques coupled with the methods at the leading edge of contemporary research.

Please visit the book companion website at https: //www.cs.waikato.ac.nz/ ml/weka/book.html.

It contains

  • Powerpoint slides for Chapters 1-12. This is a very comprehensive teaching resource, with many PPT slides covering each chapter of the book
  • Online Appendix on the Weka workbench; again a very comprehensive learning aid for the open source software that goes with the book
  • Table of contents, highlighting the many new sections in the 4th edition, along with reviews of the 1st edition, errata, etc.

  • Provides a thorough grounding in machine learning concepts, as well as practical advice on applying the tools and techniques to data mining projects
  • Presents concrete tips and techniques for performance improvement that work by transforming the input or output in machine learning methods
  • Includes a downloadable WEKA software toolkit, a comprehensive collection of machine learning algorithms for data mining tasks-in an easy-to-use interactive interface
  • Includes open-access online courses that introduce practical applications of the material in the book
Data Mining: Practical Machine Learning Tools and Techniques,

Автор: Ian H. Witten
Название: Data Mining: Practical Machine Learning Tools and Techniques,
ISBN: 0123748569 ISBN-13(EAN): 9780123748560
Издательство: Elsevier Science
Рейтинг:
Цена: 8695.00 р.
Наличие на складе: Поставка под заказ.

Описание: Like the popular second edition, Data Mining: Practical Machine Learning Tools and Techniques offers a thorough grounding in machine learning concepts as well as practical advice on applying machine learning tools and techniques in real-world data mining situations. Inside, you'll learn all you need to know about preparing inputs, interpreting outputs, evaluating results, and the algorithmic methods at the heart of successful data mining?including both tried-and-true techniques of today as well as methods at the leading edge of contemporary research. <br><br>Complementing the book is a fully functional platform-independent open source Weka software for machine learning, available for free download. <br><br>The book is a major revision of the second edition that appeared in 2005. While the basic core remains the same, it has been updated to reflect the changes that have taken place over the last four or five years. The highlights for the updated new edition include completely revised technique sections; new chapter on Data Transformations, new chapter on Ensemble Learning, new chapter on Massive Data Sets, a new ?book release? version of the popular Weka machine learning open source software (developed by the authors and specific to the Third Edition); new material on ?multi-instance learning?; new information on ranking the classification, plus comprehensive updates and modernization throughout. All in all, approximately 100 pages of new material.<br> <br><br>* Thorough grounding in machine learning concepts as well as practical advice on applying the tools and techniques<br><br>* Algorithmic methods at the heart of successful data mining?including tired and true methods as well as leading edge methods<br><br>* Performance improvement techniques that work by transforming the input or output<br><br>* Downloadable Weka, a collection of machine learning algorithms for data mining tasks, including tools for data pre-processing, classification, regression, clustering, association rules, and visualization?in an updated, interactive interface. <br>

Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics

Автор: Clara Pizzuti; Marylyn D. Ritchie; Mario Giacobini
Название: Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics
ISBN: 3642011837 ISBN-13(EAN): 9783642011832
Издательство: Springer
Рейтинг:
Цена: 9781.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Constitutes the refereed proceedings of the 7th European Conference on Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics, EvoBIO 2009, held in Tubingen, Germany, in April 2009 co located with the Evo 2009 events. This book includes such topics as biomarker discovery, cell simulation and modeling, and ecological modeling.

Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics

Автор: Elena Marchiori; Jason H. Moore; Jagath C. Rajapak
Название: Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics
ISBN: 354071782X ISBN-13(EAN): 9783540717829
Издательство: Springer
Рейтинг:
Цена: 9781.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Constitutes the refereed proceedings of the 5th European Conference on Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics, EvoBIO 2007, held in Valencia, Spain in April 2007, colocated with the Evo 2007 events. This book presents 28 revised full papers that were reviewed and selected from 60 submissions.

Evolutionary Computation in Data Mining

Автор: Ashish Ghosh
Название: Evolutionary Computation in Data Mining
ISBN: 3642421954 ISBN-13(EAN): 9783642421952
Издательство: Springer
Рейтинг:
Цена: 20962.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Data mining (DM) consists of extracting interesting knowledge from re- world, large & complex data sets; The goal of data preprocessing methods is to transform the data to facilitate the application of a (or several) given DM algorithm(s), whereas the goal of knowledge refinement methods is to validate and refine discovered knowledge.

Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics

Автор: Elena Marchiori; Jason H. Moore
Название: Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics
ISBN: 3540787569 ISBN-13(EAN): 9783540787563
Издательство: Springer
Рейтинг:
Цена: 9083.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: 6th European Conference EvoBIO 2008 Naples Italy March 26-28 2008 Proceedings.

Quantum Machine Learning: What Quantum Computing Means to Data Mining

Автор: Wittek Peter
Название: Quantum Machine Learning: What Quantum Computing Means to Data Mining
ISBN: 0128100400 ISBN-13(EAN): 9780128100400
Издательство: Elsevier Science
Рейтинг:
Цена: 11789.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Quantum Machine Learning bridges the gap between abstract developments in quantum computing and the applied research on machine learning. Paring down the complexity of the disciplines involved, it focuses on providing a synthesis that explains the most important machine learning algorithms in a quantum framework. Theoretical advances in quantum computing are hard to follow for computer scientists, and sometimes even for researchers involved in the field. The lack of a step-by-step guide hampers the broader understanding of this emergent interdisciplinary body of research. . Quantum Machine Learning sets the scene for a deeper understanding of the subject for readers of different backgrounds. The author has carefully constructed a clear comparison of classical learning algorithms and their quantum counterparts, thus making differences in computational complexity and learning performance apparent. This book synthesizes of a broad array of research into a manageable and concise presentation, with practical examples and applications.

Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics

Автор: Clara Pizzuti; Marylyn D. Ritchie; Mario Giacobini
Название: Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics
ISBN: 3642122108 ISBN-13(EAN): 9783642122101
Издательство: Springer
Цена: 9781.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Statistical and Machine-Learning Data Mining

Автор: Ratner Bruce
Название: Statistical and Machine-Learning Data Mining
ISBN: 1439860912 ISBN-13(EAN): 9781439860915
Издательство: Taylor&Francis
Рейтинг:
Цена: 9033.00 р.
Наличие на складе: Поставка под заказ.

Описание: Rev. ed. of: Statistical modeling and analysis for database marketing. c2003.

Evolutionary bioinformatics /

Автор: Forsdyke, Donald R.
Название: Evolutionary bioinformatics /
ISBN: 3319287532 ISBN-13(EAN): 9783319287539
Издательство: Springer
Рейтинг:
Цена: 26552.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Now in its third edition and supplemented with more online material, this book aims to make the "new" information-based (rather than gene-based) bioinformatics intelligible both to the "bio" people and the "info" people.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия