Ensembles of Type 2 Fuzzy Neural Models and Their Optimization with Bio-Inspired Algorithms for Time Series Prediction, Soto Jesus, Melin Patricia, Castillo Oscar
Описание: This book comprises papers on diverse aspects of fuzzy logic, neural networks, and nature-inspired optimization meta-heuristics and their application in various areas such as intelligent control and robotics, pattern recognition, medical diagnosis, time series prediction and optimization of complex problems. The book is organized into seven main parts, each with a collection of papers on a similar subject. The first part presents new concepts and algorithms based on type-2 fuzzy logic for dynamic parameter adaptation in meta-heuristics. The second part discusses network theory and applications, and includes papers describing applications of neural networks in diverse areas, such as time series prediction and pattern recognition. The third part addresses the theory and practice of meta-heuristics in different areas of application, while the fourth part describes diverse fuzzy logic applications in the control area, which can be considered as intelligent controllers. The next two parts explore applications in areas, such as time series prediction, and pattern recognition and new optimization and evolutionary algorithms and their applications respectively. Lastly, the seventh part addresses the design and application of different hybrid intelligent systems.
Автор: Song Tao, Zheng Pan, Wong Dennis Mou Ling, Wang Xu Название: Bio-inspired Computing Models And Algorithms ISBN: 9813143177 ISBN-13(EAN): 9789813143173 Издательство: World Scientific Publishing Рейтинг: Цена: 19008.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:
Bio-inspired computing (BIC) focuses on the designs and developments of computer algorithms and models based on biological mechanisms and living phenomena. It is now a major subfield of natural computation that leverages on the recent advances in computer science, biology and mathematics.
The ideas provide abundant inspiration to construct high-performance computing models and intelligent algorithms, thus enabling powerful tools to solve real-life problems.
Written by world-renowned researchers, this compendium covers the most influential topics on BIC, where the newly-obtained algorithms, developments and results are introduced and elaborated. The potential and valuable directions for further research are addressed as well.
Описание: Introduction.- Theory and Background.- Problems Statement.- Methodology.- Simulation Results.- Statistical Analysis and Comparison of Results.
Описание: This book comprises papers on diverse aspects of fuzzy logic, neural networks, and nature-inspired optimization meta-heuristics and their application in various areas such as intelligent control and robotics, pattern recognition, medical diagnosis, time series prediction and optimization of complex problems. The book is organized into seven main parts, each with a collection of papers on a similar subject. The first part presents new concepts and algorithms based on type-2 fuzzy logic for dynamic parameter adaptation in meta-heuristics. The second part discusses network theory and applications, and includes papers describing applications of neural networks in diverse areas, such as time series prediction and pattern recognition. The third part addresses the theory and practice of meta-heuristics in different areas of application, while the fourth part describes diverse fuzzy logic applications in the control area, which can be considered as intelligent controllers. The next two parts explore applications in areas, such as time series prediction, and pattern recognition and new optimization and evolutionary algorithms and their applications respectively. Lastly, the seventh part addresses the design and application of different hybrid intelligent systems.
Описание: This book presents recent advances on the design of intelligent systems based on fuzzy logic, neural networks and nature-inspired optimization and their application in areas such as, intelligent control and robotics, pattern recognition, time series prediction and optimization of complex problems.
Описание: This book presents recent advances on the design of intelligent systems based on fuzzy logic, neural networks and nature-inspired optimization and their application in areas such as, intelligent control and robotics, pattern recognition, time series prediction and optimization of complex problems.
Описание: This research monograph is highly contextual in the present era of spatial/spatio-temporal data explosion. The monograph is primarily prepared for graduate students of Computer Science, who wish to employ probabilistic graphical models, especially Bayesian networks (BNs), for applied research on spatial/spatio-temporal data.
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru