Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Enhanced Bayesian Network Models for Spatial Time Series Prediction, Monidipa Das; Soumya K. Ghosh


Варианты приобретения
Цена: 20962.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Monidipa Das; Soumya K. Ghosh
Название:  Enhanced Bayesian Network Models for Spatial Time Series Prediction
ISBN: 9783030277482
Издательство: Springer
Классификация:




ISBN-10: 3030277488
Обложка/Формат: Hardcover
Страницы: 149
Вес: 0.44 кг.
Дата издания: 2020
Серия: Studies in Computational Intelligence
Язык: English
Издание: 1st ed. 2020
Иллюстрации: 59 illustrations, color; 8 illustrations, black and white; xxiii, 149 p. 67 illus., 59 illus. in color.
Размер: 234 x 156 x 11
Читательская аудитория: Professional & vocational
Основная тема: Engineering
Подзаголовок: Recent Research Trend in Data-Driven Predictive Analytics
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание: This research monograph is highly contextual in the present era of spatial/spatio-temporal data explosion. The monograph is primarily prepared for graduate students of Computer Science, who wish to employ probabilistic graphical models, especially Bayesian networks (BNs), for applied research on spatial/spatio-temporal data.


Time-Series Prediction and Applications

Автор: Amit Konar; Diptendu Bhattacharya
Название: Time-Series Prediction and Applications
ISBN: 3319545965 ISBN-13(EAN): 9783319545967
Издательство: Springer
Рейтинг:
Цена: 20962.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book presents machine learning and type-2 fuzzy sets for the prediction of time-series with a particular focus on business forecasting applications.

Ensembles of Type 2 Fuzzy Neural Models and Their Optimization with Bio-Inspired Algorithms for Time Series Prediction

Автор: Soto Jesus, Melin Patricia, Castillo Oscar
Название: Ensembles of Type 2 Fuzzy Neural Models and Their Optimization with Bio-Inspired Algorithms for Time Series Prediction
ISBN: 3319712632 ISBN-13(EAN): 9783319712635
Издательство: Springer
Рейтинг:
Цена: 6986.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book focuses on the fields of hybrid intelligent systems based on fuzzy systems, neural networks, bio-inspired algorithms and time series. Prediction errors are evaluated by the following metrics: Mean Absolute Error, Mean Square Error, Root Mean Square Error, Mean Percentage Error and Mean Absolute Percentage Error.

Practical Time Series Analysis: Prediction with Statistics and Machine Learning

Автор: Nielsen Aileen
Название: Practical Time Series Analysis: Prediction with Statistics and Machine Learning
ISBN: 1492041653 ISBN-13(EAN): 9781492041658
Издательство: Wiley
Рейтинг:
Цена: 10136.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Covering innovations in time series data analysis and use cases from the real world, this practical guide will help you solve the most common data engineering and analysis challenges in time series, using both traditional statistical and modern machine learning techniques.

The Relevance of the Time Domain to Neural Network Models

Автор: A. Ravishankar Rao; Guillermo A. Cecchi
Название: The Relevance of the Time Domain to Neural Network Models
ISBN: 1461429927 ISBN-13(EAN): 9781461429920
Издательство: Springer
Рейтинг:
Цена: 26120.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Here is a unified view of how the time domain can be effectively employed in neural network models. Covers synchronization, phase-locking behavior, image processing, temporal pattern analysis, fMRI analyis, network topology and synchronizability and more.

Stochastic Models in Reliability, Network Security and System Safety

Автор: Quan-Lin Li; Jinting Wang; Hai-Bo Yu
Название: Stochastic Models in Reliability, Network Security and System Safety
ISBN: 9811508631 ISBN-13(EAN): 9789811508639
Издательство: Springer
Рейтинг:
Цена: 6986.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book is dedicated to Jinhua Cao on the occasion of his 80th birthday. Jinhua Cao is one of the most famous reliability theorists. His main contributions include: published over 100 influential scientific papers; published an interesting reliability book in Chinese in 1986, which has greatly influenced the reliability of education, academic research and engineering applications in China; initiated and organized Reliability Professional Society of China (the first part of Operations Research Society of China) since 1981. The high admiration that Professor Cao enjoys in the reliability community all over the world was witnessed by the enthusiastic response of each contributor in this book. The contributors are leading researchers with diverse research perspectives. The research areas of the book iclude a broad range of topics related to reliability models, queueing theory, manufacturing systems, supply chain finance, risk management, Markov decision processes, blockchain and so forth.The book consists of a brief Preface describing the main achievements of Professor Cao; followed by congratulations from Professors Way Kuo and Wei Wayne Li, and by Operations Research Society of China, and Reliability Professional Society of China; and further followed by 25 articles roughly grouped together. Most of the articles are written in a style understandable to a wide audience. This book is useful to anyone interested in recent developments in reliability, network security, system safety, and their stochastic modeling and analysis.

Analysis of Deterministic Cyclic Gene Regulatory Network Models with Delays

Автор: Mehmet Eren Ahsen; Hitay ?zbay; Silviu-Iulian Nicu
Название: Analysis of Deterministic Cyclic Gene Regulatory Network Models with Delays
ISBN: 3319156055 ISBN-13(EAN): 9783319156057
Издательство: Springer
Рейтинг:
Цена: 7685.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This brief examines a deterministic, ODE-based model for gene regulatory networks (GRN) that incorporates nonlinearities and time-delayed feedback. One chapter is devoted to the analysis of GRNs under negative feedback with time delays and a special case of a homogenous GRN is considered.

Applied Bayesian Forecasting and Time Series Analysis

Автор: Pole, Andy , West, Mike , Harrison, Jeff
Название: Applied Bayesian Forecasting and Time Series Analysis
ISBN: 0367449382 ISBN-13(EAN): 9780367449384
Издательство: Taylor&Francis
Рейтинг:
Цена: 9492.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book is about practical forecasting and analysis of time series. It describes how to analyse time series data, how to identify structure, how to explain observed behaviour, how to model structures and behaviours, and how to use insight gained from the analysis to make informed forecasts.

Medical Computer Vision and Bayesian and Graphical Models for Biomedical Imaging

Автор: Henning M?ller; B. Michael Kelm; Tal Arbel; Weidon
Название: Medical Computer Vision and Bayesian and Graphical Models for Biomedical Imaging
ISBN: 3319611879 ISBN-13(EAN): 9783319611877
Издательство: Springer
Рейтинг:
Цена: 7685.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Constructing Subject- and Disease-Specific Effect Maps: Application to Neurodegenerative Diseases.- BigBrain: Automated Cortical Parcellation and Comparison with Existing Brain Atlases.- LATEST: Local AdapTivE and Sequential Training for Tissue Segmentation of Isointense Infant Brain MR Images.- Landmark-based Alzheimer's Disease Diagnosis Using Longitudinal Structural MR Images.- Inferring Disease Status by non-Parametric Probabilistic Embedding.- A Lung Graph-Model for Pulmonary Hypertension and Pulmonary Embolism Detection on DECT Images.- Explaining Radiological Emphysema Subtypes with Unsupervised Texture Prototypes: MESA COPD Study.- Automatic Segmentation of Abdominal MRI Using Selective Sampling and Random Walker.- Gaze2Segment: A Pilot Study for Integrating Eye-Tracking Technology into Medical Image Segmentation.- Automatic Detection of Histological Artifacts in Mouse Brain Slice Images.- Lung Nodule Classification by Jointly Using Visual Descriptors and Deep Features.- Representation Learning for Cross-Modality Classification.- Guideline-based Machine Learning for Standard Plane Extraction in 3D Cardiac Ultrasound.- A Statistical Model for Simultaneous Template Estimation, Bias Correction, and Registration of 3D Brain Images.- Bayesian Multiview Manifold Learning Applied to Hippocampus Shape and Clinical Score Data.- Rigid Slice-To-Volume Medical Image Registration through Markov Random Fields.- Sparse Probabilistic Parallel Factor Analysis for the Modeling of PET and Task-fMRI data.- Non-local Graph-based Regularization for Deformable Image Registration.- Unsupervised Framework for Consistent Longitudinal MS Lesion Segmentation.

Bayesian and grAphical Models for Biomedical Imaging

Автор: M. Jorge Cardoso; Ivor Simpson; Tal Arbel; Doina P
Название: Bayesian and grAphical Models for Biomedical Imaging
ISBN: 3319122886 ISBN-13(EAN): 9783319122885
Издательство: Springer
Рейтинг:
Цена: 5590.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

N3 Bias Field Correction Explained as a Bayesian Modeling Method.- A Bayesian Approach to Distinguishing Interdigitated Muscles in the Tongue from Limited Diffusion Weighted Imaging.- Optimal Joint Segmentation and Tracking of Escherichia Coli in the Mother Machine.- Physiologically Informed Bayesian Analysis of ASL fMRI Data.- Bone Reposition Planning for Corrective Surgery Using Statistical Shape Model: Assessment of Differential Geometrical Features.- An Inference Language for Imaging.- An MRF-Based Discrete Optimization Framework for Combined DCE-MRI Motion Correction and Pharmacokinetic Parameter Estimation.- Learning Imaging Biomarker Trajectories from Noisy Alzheimer's Disease Data Using a Bayesian Multilevel Model.- Four Neuroimaging Questions that P-Values Cannot Answer (and Bayesian Analysis Can).- Spherical Topic Models for Imaging Phenotype Discovery in Genetic Studies.- A Generative Model for Automatic Detection of Resolving Multiple Sclerosis Lesions.

NETWORK MODELS          HORM 7

Автор: BALL
Название: NETWORK MODELS HORM 7
ISBN: 0444892923 ISBN-13(EAN): 9780444892928
Издательство: Elsevier Science
Рейтинг:
Цена: 8098.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This text presents papers reflecting the wide range of theories and applications of network models. Several chapters model issues in the domains of telecommunications and transportation.

Network-Oriented Modeling for Adaptive Networks: Designing Higher-Order Adaptive Biological, Mental and Social Network Models

Автор: Jan Treur
Название: Network-Oriented Modeling for Adaptive Networks: Designing Higher-Order Adaptive Biological, Mental and Social Network Models
ISBN: 3030314448 ISBN-13(EAN): 9783030314446
Издательство: Springer
Рейтинг:
Цена: 13974.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Moreover, because adaptive networks are described in a network format as well, the approach can simply be applied iteratively, so that higher-order adaptive networks in which network adaptation itself is adaptive (second-order adaptation), too can be modeled just as easily.

Expert Systems and Probabilistic Network Models

Автор: Enrique Castillo; Jose M. Gutierrez; Ali S. Hadi
Название: Expert Systems and Probabilistic Network Models
ISBN: 1461274818 ISBN-13(EAN): 9781461274810
Издательство: Springer
Рейтинг:
Цена: 16769.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Artificial intelligence and expert systems have seen a great deal of research in recent years, much of which has been devoted to methods for incorporating uncertainty into models. This book is devoted to providing a thorough and up-to-date survey of this field for researchers and students.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия