Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Machine Learning for Email, 


Варианты приобретения
Цена: 3166.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-08-04
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания


Название:  Machine Learning for Email
ISBN: 9781449314309
Издательство: Wiley
Классификация:

ISBN-10: 1449314309
Обложка/Формат: Paperback
Страницы: 100
Вес: 0.27 кг.
Дата издания: 25/11/2011
Язык: English
Издание: 1st
Иллюстрации: Illustrations
Размер: 234 x 179 x 9
Читательская аудитория: Technical / manuals
Подзаголовок: Spam filtering and priority inbox
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Англии
Описание: This compact book explores standard tools for text classification, and teaches the reader how to use machine learning to decide whether a e-mail is spam or ham (binary classification), based on raw data from The SpamAssassin Public Corpus.


Data-driven science and engineering

Автор: Brunton, Steven L. (university Of Washington) Kutz
Название: Data-driven science and engineering
ISBN: 1009098489 ISBN-13(EAN): 9781009098489
Издательство: Cambridge Academ
Рейтинг:
Цена: 7918.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Data-driven discovery is revolutionizing how we model, predict, and control complex systems. This text integrates emerging machine learning and data science methods for engineering and science communities. Now with Python and MATLAB (R), new chapters on reinforcement learning and physics-informed machine learning, and supplementary videos and code.

Machine Learning with Python

Автор: Zollanvari, Amin
Название: Machine Learning with Python
ISBN: 3031333411 ISBN-13(EAN): 9783031333415
Издательство: Springer
Рейтинг:
Цена: 9083.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book is meant as a textbook for undergraduate and graduate students who are willing to understand essential elements of machine learning from both a theoretical and a practical perspective. The choice of the topics in the book is made based on one criterion: whether the practical utility of a certain method justifies its theoretical elaboration for students with a typical mathematical background in engineering and other quantitative fields. As a result, not only does the book contain practically useful techniques, it also presents them in a mathematical language that is accessible to both graduate and advanced undergraduate students. The textbook covers a range of topics including nearest neighbors, linear models, decision trees, ensemble learning, model evaluation and selection, dimensionality reduction, assembling various learning stages, clustering, and deep learning along with an introduction to fundamental Python packages for data science and machine learning such as NumPy, Pandas, Matplotlib, Scikit-Learn, XGBoost, and Keras with TensorFlow backend. Given the current dominant role of the Python programming language for machine learning, the book complements the theoretical presentation of each technique by its Python implementation. In this regard, two chapters are devoted to cover necessary Python programming skills. This feature makes the book self-sufficient for students with different programming backgrounds and is in sharp contrast with other books in the field that assume readers have prior Python programming experience. As such, the systematic structure of the book, along with the many examples and exercises presented, will help the readers to better grasp the content and be equipped with the practical skills required in day-to-day machine learning applications.

Mathematics for Machine Learning

Автор: Marc Peter Deisenroth, A. Aldo Faisal, Cheng Soon Ong
Название: Mathematics for Machine Learning
ISBN: 110845514X ISBN-13(EAN): 9781108455145
Издательство: Cambridge Academ
Рейтинг:
Цена: 6334.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This self-contained textbook introduces all the relevant mathematical concepts needed to understand and use machine learning methods, with a minimum of prerequisites. Topics include linear algebra, analytic geometry, matrix decompositions, vector calculus, optimization, probability and statistics.

Computer Age Statistical Inference, Student Edition

Автор: Bradley Efron , Trevor Hastie
Название: Computer Age Statistical Inference, Student Edition
ISBN: 1108823416 ISBN-13(EAN): 9781108823418
Издательство: Cambridge Academ
Рейтинг:
Цена: 5069.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Computing power has revolutionized the theory and practice of statistical inference. Now in paperback, and fortified with 130 class-tested exercises, this book explains modern statistical thinking from classical theories to state-of-the-art prediction algorithms. Anyone who applies statistical methods to data will value this landmark text.

Deep Learning

Автор: Goodfellow Ian, Bengio Yoshua, Courville Aaron
Название: Deep Learning
ISBN: 0262035618 ISBN-13(EAN): 9780262035613
Издательство: MIT Press
Рейтинг:
Цена: 13543.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

An introduction to a broad range of topics in deep learning, covering mathematical and conceptual background, deep learning techniques used in industry, and research perspectives.

"Written by three experts in the field, Deep Learning is the only comprehensive book on the subject."
-- Elon Musk, cochair of OpenAI; cofounder and CEO of Tesla and SpaceX

Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning.

The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models.

Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.

Graph Representation Learning

Автор: Hamilton, William L.
Название: Graph Representation Learning
ISBN: 3031004604 ISBN-13(EAN): 9783031004605
Издательство: Springer
Рейтинг:
Цена: 7685.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: These advances in graph representation learning have led to new state-of-the-art results in numerous domains, including chemical synthesis, 3D vision, recommender systems, question answering, and social network analysis.This book provides a synthesis and overview of graph representation learning.

Automatic Tuning of Compilers Using Machine Learning

Автор: Ashouri
Название: Automatic Tuning of Compilers Using Machine Learning
ISBN: 3319714880 ISBN-13(EAN): 9783319714882
Издательство: Springer
Рейтинг:
Цена: 6986.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book explores break-through approaches to tackling and mitigating the well-known problems of compiler optimization using design space exploration and machine learning techniques.

Machine Learning Guide for Oil and Gas Using Python: A Step-By-Step Breakdown with Data, Algorithms, Codes, and Applications

Автор: Belyadi Hoss, Haghighat Alireza
Название: Machine Learning Guide for Oil and Gas Using Python: A Step-By-Step Breakdown with Data, Algorithms, Codes, and Applications
ISBN: 0128219297 ISBN-13(EAN): 9780128219294
Издательство: Elsevier Science
Рейтинг:
Цена: 19370.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

Machine Learning Guide for Oil and Gas Using Python: A Step-by-Step Breakdown with Data, Algorithms, Codes, and Applications delivers a critical training and resource tool to help engineers understand machine learning theory and practice, specifically referencing use cases in oil and gas. The reference moves from explaining how Python works to step-by-step examples of utilization in various oil and gas scenarios, such as well testing, shale reservoirs and production optimization. Petroleum engineers are quickly applying machine learning techniques to their data challenges, but there is a lack of references beyond the math or heavy theory of machine learning. Machine Learning Guide for Oil and Gas Using Python details the open-source tool Python by explaining how it works at an introductory level then bridging into how to apply the algorithms into different oil and gas scenarios. While similar resources are often too mathematical, this book balances theory with applications, including use cases that help solve different oil and gas data challenges.

Building feature extraction with machine learning :

Автор: Aithal, Bharath H.,
Название: Building feature extraction with machine learning :
ISBN: 1032255331 ISBN-13(EAN): 9781032255330
Издательство: Taylor&Francis
Рейтинг:
Цена: 12554.00 р.
Наличие на складе: Поставка под заказ.

Описание: This book focuses on feature extraction methods for optical geospatial data using Machine Learning (ML). It is a practical guide for professionals and graduate students starting a career in information extraction. It explains spatial feature extraction in an easy-to-understand way and includes real case studies.

Gaussian processes for machine learning

Автор: Rasmussen, Carl Edward Williams, Christopher K. I.
Название: Gaussian processes for machine learning
ISBN: 026218253X ISBN-13(EAN): 9780262182539
Издательство: MIT Press
Рейтинг:
Цена: 8465.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

A comprehensive and self-contained introduction to Gaussian processes, which provide a principled, practical, probabilistic approach to learning in kernel machines.

Gaussian processes (GPs) provide a principled, practical, probabilistic approach to learning in kernel machines. GPs have received increased attention in the machine-learning community over the past decade, and this book provides a long-needed systematic and unified treatment of theoretical and practical aspects of GPs in machine learning. The treatment is comprehensive and self-contained, targeted at researchers and students in machine learning and applied statistics. The book deals with the supervised-learning problem for both regression and classification, and includes detailed algorithms. A wide variety of covariance (kernel) functions are presented and their properties discussed. Model selection is discussed both from a Bayesian and a classical perspective. Many connections to other well-known techniques from machine learning and statistics are discussed, including support-vector machines, neural networks, splines, regularization networks, relevance vector machines and others. Theoretical issues including learning curves and the PAC-Bayesian framework are treated, and several approximation methods for learning with large datasets are discussed. The book contains illustrative examples and exercises, and code and datasets are available on the Web. Appendixes provide mathematical background and a discussion of Gaussian Markov processes.

Smart Applications with Advanced Machine Learning and Human-Centred Problem Design

Автор: Hemanth
Название: Smart Applications with Advanced Machine Learning and Human-Centred Problem Design
ISBN: 3031097521 ISBN-13(EAN): 9783031097522
Издательство: Springer
Рейтинг:
Цена: 27950.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book brings together the most recent, quality research papers accepted and presented in the 3rd International Conference on Artificial Intelligence and Applied Mathematics in Engineering (ICAIAME 2021) held in Antalya, Turkey between 1-3 October 2021. Objective of the content is to provide important and innovative research for developments-improvements within different engineering fields, which are highly interested in using artificial intelligence and applied mathematics. As a collection of the outputs from the ICAIAME 2021, the book is specifically considering research outcomes including advanced use of machine learning and careful problem designs on human-centred aspects. In this context, it aims to provide recent applications for real-world improvements making life easier and more sustainable for especially humans. The book targets the researchers, degree students, and practitioners from both academia and the industry.

Machine Learning and Flow Assurance in Oil and Gas Production

Автор: Bhajan Lal, Cornelius Borecho Bavoh
Название: Machine Learning and Flow Assurance in Oil and Gas Production
ISBN: 3031242300 ISBN-13(EAN): 9783031242304
Издательство: Springer
Рейтинг:
Цена: 22359.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book is useful to flow assurance engineers, students, and industries who wish to be flow assurance authorities in the twenty-first-century oil and gas industry. The use of digital or artificial intelligence methods in flow assurance has increased recently to achieve fast results without any thorough training effectively. Generally, flow assurance covers all risks associated with maintaining the flow of oil and gas during any stage in the petroleum industry. Flow assurance in the oil and gas industry covers the anticipation, limitation, and/or prevention of hydrates, wax, asphaltenes, scale, and corrosion during operation. Flow assurance challenges mostly lead to stoppage of production or plugs, damage to pipelines or production facilities, economic losses, and in severe cases blowouts and loss of human lives. A combination of several chemical and non-chemical techniques is mostly used to prevent flow assurance issues in the industry. However, the use of models to anticipate, limit, and/or prevent flow assurance problems is recommended as the best and most suitable practice. The existing proposed flow assurance models on hydrates, wax, asphaltenes, scale, and corrosion management are challenged with accuracy and precision. They are not also limited by several parametric assumptions. Recently, machine learning methods have gained much attention as best practices for predicting flow assurance issues. Examples of these machine learning models include conventional approaches such as artificial neural network, support vector machine (SVM), least square support vector machine (LSSVM), random forest (RF), and hybrid models. The use of machine learning in flow assurance is growing, and thus, relevant knowledge and guidelines on their application methods and effectiveness are needed for academic, industrial, and research purposes. In this book, the authors focus on the use and abilities of various machine learning methods in flow assurance. Initially, basic definitions and use of machine learning in flow assurance are discussed in a broader scope within the oil and gas industry. The rest of the chapters discuss the use of machine learning in various flow assurance areas such as hydrates, wax, asphaltenes, scale, and corrosion. Also, the use of machine learning in practical field applications is discussed to understand the practical use of machine learning in flow assurance.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия