Автор: Manouselis Nikos Название: Recommender Systems for Technology Enhanced Learning ISBN: 1493905295 ISBN-13(EAN): 9781493905294 Издательство: Springer Рейтинг: Цена: 15372.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Recommender Systems for Technology Enhanced Learning
Автор: Katarzyna Tarnowska; Zbigniew W. Ras; Lynn Daniel Название: Recommender System for Improving Customer Loyalty ISBN: 3030134377 ISBN-13(EAN): 9783030134372 Издательство: Springer Рейтинг: Цена: 13974.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book presents the Recommender System for Improving Customer Loyalty. New and innovative products have begun appearing from a wide variety of countries, which has increased the need to improve the customer experience. When a customer spends hundreds of thousands of dollars on a piece of equipment, keeping it running efficiently is critical to achieving the desired return on investment. Moreover, managers have discovered that delivering a better customer experience pays off in a number of ways. A study of publicly traded companies conducted by Watermark Consulting found that from 2007 to 2013, companies with a better customer service generated a total return to shareholders that was 26 points higher than the S&P 500. This is only one of many studies that illustrate the measurable value of providing a better service experience.
The Recommender System presented here addresses several important issues. (1) It provides a decision framework to help managers determine which actions are likely to have the greatest impact on the Net Promoter Score. (2) The results are based on multiple clients. The data mining techniques employed in the Recommender System allow users to “learn” from the experiences of others, without sharing proprietary information. This dramatically enhances the power of the system. (3) It supplements traditional text mining options. Text mining can be used to identify the frequency with which topics are mentioned, and the sentiment associated with a given topic. The Recommender System allows users to view specific, anonymous comments associated with actual customers. Studying these comments can provide highly accurate insights into the steps that can be taken to improve the customer experience. (4) Lastly, the system provides a sensitivity analysis feature. In some cases, certain actions can be more easily implemented than others. The Recommender System allows managers to “weigh” these actions and determine which ones would have a greater impact.
Автор: Panagiotis Symeonidis; Andreas Zioupos Название: Matrix and Tensor Factorization Techniques for Recommender Systems ISBN: 3319413562 ISBN-13(EAN): 9783319413563 Издательство: Springer Рейтинг: Цена: 7685.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book provides a detailed theoretical mathematical background of matrix/tensor factorization techniques and a step-by-step analysis of each method on the basis of an integrated toy example that runs throughout all its chapters and helps the reader to understand the key differences among methods.
Название: Recommender systems ISBN: 0367631857 ISBN-13(EAN): 9780367631857 Издательство: Taylor&Francis Рейтинг: Цена: 15310.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Recommender systems use information filtering to predict user preferences. They are becoming a vital part of e-business. Recommender Systems: Algorithms and Applications dives into the theoretical underpinnings of these systems and looks at how theory is applied and implemented in actual systems.
Автор: Nikos Manouselis; Hendrik Drachsler; Katrien Verbe Название: Recommender Systems for Technology Enhanced Learning ISBN: 1493946560 ISBN-13(EAN): 9781493946563 Издательство: Springer Рейтинг: Цена: 15372.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Collaborative Filtering Recommendation of Educational Content in Social Environments utilizing Sentiment Analysis Techniques.- Towards automated evaluation of learning resources inside repositories.- Linked Data and the Social Web as facilitators for TEL recommender systems in research and practice.- The Learning Registry: Applying Social Metadata for Learning Resource Recommendations.- A Framework for Personalised Learning-Plan Recommendations in Game-Based Learning.- An approach for an Affective Educational Recommendation Model.- The Case for Preference-Inconsistent Recommendations.- Further Thoughts on Context-Aware Paper Recommendations for Education.- Towards a Social Trust-aware Recommender for Teachers.- ALEF: from Application to Platform for Adaptive Collaborative Learning.- Two Recommending Strategies to enhance Online Presence in Personal Learning Environments.- Recommendations from Heterogeneous Sources in a Technology Enhanced Learning Ecosystem.- COCOON CORE: CO-Author Recommendations based on Betweenness Centrality and Interest Similarity.- Scientific Recommendations to Enhance Scholarly Awareness and Foster Collaboration.
Автор: Patricia Victor; Chris Cornelis; Martine De Cock Название: Trust Networks for Recommender Systems ISBN: 9491216392 ISBN-13(EAN): 9789491216398 Издательство: Springer Рейтинг: Цена: 13974.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Featuring innovative contributions to the field such as a new bilattice-based model for trust and distrust, this book on a hot research topic is the first in-depth study of the potential of distrust in the emerging domain of trust-enhanced recommendation.
Автор: Francesco Ricci; Lior Rokach; Bracha Shapira Название: Recommender Systems Handbook ISBN: 1489977805 ISBN-13(EAN): 9781489977809 Издательство: Springer Рейтинг: Цена: 25853.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Recommender Systems: Introduction and Challenges.- A Comprehensive Survey of Neighborhood-based Recommendation Methods.- Advances in Collaborative Filtering.- Semantics-aware Content-based Recommender Systems.- Constraint-based Recommender Systems.- Context-Aware Recommender Systems.- Data Mining Methods for Recommender Systems.- Evaluating Recommender Systems.- Evaluating Recommender Systems with User Experiments.- Explaining Recommendations: Design and Evaluation.- Recommender Systems in Industry: A Netflix Case Study.- Panorama of Recommender Systems to Support Learning.- Music Recommender Systems.- The Anatomy of Mobile Location-Based Recommender Systems.- Social Recommender Systems.- People-to-People Reciprocal Recommenders.- Collaboration, Reputation and Recommender Systems in Social Web Search.- Human Decision Making and Recommender Systems.- Privacy Aspects of Recommender Systems.- Source Factors in Recommender System Credibility Evaluation.- Personality and Recommender Systems.- Group Recommender Systems: Aggregation, Satisfaction and Group Attributes.- Aggregation Functions for Recommender Systems.- Active Learning in Recommender Systems.- Multi-Criteria Recommender Systems.- Novelty and Diversity in Recommender Systems.- Cross-domain Recommender Systems.- Robust Collaborative Recommendation.
Автор: Aggarwal Charu C. Название: Recommender Systems: The Textbook ISBN: 331980619X ISBN-13(EAN): 9783319806198 Издательство: Springer Рейтинг: Цена: 9362.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: An Introduction to Recommender Systems.- Neighborhood-Based Collaborative Filtering.- Model-Based Collaborative Filtering.- Content-Based Recommender Systems.- Knowledge-Based Recommender Systems.- Ensemble-Based and Hybrid Recommender Systems.- Evaluating Recommender Systems.- Context-Sensitive Recommender Systems.- Time- and Location-Sensitive Recommender Systems.- Structural Recommendations in Networks.- Social and Trust-Centric Recommender Systems.- Attack-Resistant Recommender Systems.- Advanced Topics in Recommender Systems.
Автор: Jos? J. Pazos Arias; Ana Fern?ndez Vilas; Rebeca P Название: Recommender Systems for the Social Web ISBN: 3642446272 ISBN-13(EAN): 9783642446276 Издательство: Springer Рейтинг: Цена: 16977.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book introduces opportunities and challenges that arise in the recommenders` area with the advent of Web 2.0. It presents the mains aspects in the Web 2.0 hype which have to be incorporated in traditional recommender systems.
Автор: Charu C. Aggarwal Название: Recommender Systems ISBN: 3319296574 ISBN-13(EAN): 9783319296579 Издательство: Springer Рейтинг: Цена: 9362.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: An Introduction to Recommender Systems.- Neighborhood-Based Collaborative Filtering.- Model-Based Collaborative Filtering.- Content-Based Recommender Systems.- Knowledge-Based Recommender Systems.- Ensemble-Based and Hybrid Recommender Systems.- Evaluating Recommender Systems.- Context-Sensitive Recommender Systems.- Time- and Location-Sensitive Recommender Systems.- Structural Recommendations in Networks.- Social and Trust-Centric Recommender Systems.- Attack-Resistant Recommender Systems.- Advanced Topics in Recommender Systems.
Автор: Tarnowska Katarzyna, Ras Zbigniew W., Daniel Lynn Название: Recommender System for Improving Customer Loyalty ISBN: 3030134407 ISBN-13(EAN): 9783030134402 Издательство: Springer Рейтинг: Цена: 13974.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book presents the Recommender System for Improving Customer Loyalty. The data mining techniques employed in the Recommender System allow users to "learn" from the experiences of others, without sharing proprietary information.
Автор: Cai-Nicolas Ziegler Название: Social Web Artifacts for Boosting Recommenders ISBN: 331900526X ISBN-13(EAN): 9783319005263 Издательство: Springer Рейтинг: Цена: 19591.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book presents approaches for exploiting the rapidly expanding fountain of Social Web knowledge by means of classification taxonomies and trust networks, which are used to improve the performance of product-focused recommender systems.
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru