Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Machine Learning for Model Order Reduction, Mohamed


Варианты приобретения
Цена: 16769.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Mohamed
Название:  Machine Learning for Model Order Reduction
ISBN: 9783319757131
Издательство: Springer
Классификация:



ISBN-10: 331975713X
Обложка/Формат: Hardcover
Страницы: 93
Вес: 0.30 кг.
Дата издания: 2018
Язык: English
Издание: 1st ed. 2018
Иллюстрации: 39 tables, color; 39 illustrations, color; 18 illustrations, black and white; approx. 110 p. 57 illus., 39 illus. in color.
Размер: 161 x 243 x 14
Читательская аудитория: Tertiary education (us: college)
Основная тема: Circuits and Systems
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание:

Chapter1: Introduction.- Chapter2: Bio-Inspired Machine Learning Algorithm: Genetic Algorithm.- Chapter3: Thermo-Inspired Machine Learning Algorithm: Simulated Annealing.- Chapter4: Nature-Inspired Machine Learning Algorithm: Particle Swarm Optimization, Artificial Bee Colony.- Chapter5: Control-Inspired Machine Learning Algorithm: Fuzzy Logic Optimization.- Chapter6: Brain-Inspired Machine Learning Algorithm: Neural Network Optimization.- Chapter7: Comparisons, Hybrid Solutions, Hardware architectures and New Directions.- Chapter8: Conclusions.




Machine Learning with Python

Автор: Zollanvari, Amin
Название: Machine Learning with Python
ISBN: 3031333411 ISBN-13(EAN): 9783031333415
Издательство: Springer
Рейтинг:
Цена: 9083.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book is meant as a textbook for undergraduate and graduate students who are willing to understand essential elements of machine learning from both a theoretical and a practical perspective. The choice of the topics in the book is made based on one criterion: whether the practical utility of a certain method justifies its theoretical elaboration for students with a typical mathematical background in engineering and other quantitative fields. As a result, not only does the book contain practically useful techniques, it also presents them in a mathematical language that is accessible to both graduate and advanced undergraduate students. The textbook covers a range of topics including nearest neighbors, linear models, decision trees, ensemble learning, model evaluation and selection, dimensionality reduction, assembling various learning stages, clustering, and deep learning along with an introduction to fundamental Python packages for data science and machine learning such as NumPy, Pandas, Matplotlib, Scikit-Learn, XGBoost, and Keras with TensorFlow backend. Given the current dominant role of the Python programming language for machine learning, the book complements the theoretical presentation of each technique by its Python implementation. In this regard, two chapters are devoted to cover necessary Python programming skills. This feature makes the book self-sufficient for students with different programming backgrounds and is in sharp contrast with other books in the field that assume readers have prior Python programming experience. As such, the systematic structure of the book, along with the many examples and exercises presented, will help the readers to better grasp the content and be equipped with the practical skills required in day-to-day machine learning applications.

Data-driven science and engineering

Автор: Brunton, Steven L. (university Of Washington) Kutz
Название: Data-driven science and engineering
ISBN: 1009098489 ISBN-13(EAN): 9781009098489
Издательство: Cambridge Academ
Рейтинг:
Цена: 7918.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Data-driven discovery is revolutionizing how we model, predict, and control complex systems. This text integrates emerging machine learning and data science methods for engineering and science communities. Now with Python and MATLAB (R), new chapters on reinforcement learning and physics-informed machine learning, and supplementary videos and code.

Mathematics for Machine Learning

Автор: Marc Peter Deisenroth, A. Aldo Faisal, Cheng Soon Ong
Название: Mathematics for Machine Learning
ISBN: 110845514X ISBN-13(EAN): 9781108455145
Издательство: Cambridge Academ
Рейтинг:
Цена: 6334.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This self-contained textbook introduces all the relevant mathematical concepts needed to understand and use machine learning methods, with a minimum of prerequisites. Topics include linear algebra, analytic geometry, matrix decompositions, vector calculus, optimization, probability and statistics.

Computer Age Statistical Inference, Student Edition

Автор: Bradley Efron , Trevor Hastie
Название: Computer Age Statistical Inference, Student Edition
ISBN: 1108823416 ISBN-13(EAN): 9781108823418
Издательство: Cambridge Academ
Рейтинг:
Цена: 5069.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Computing power has revolutionized the theory and practice of statistical inference. Now in paperback, and fortified with 130 class-tested exercises, this book explains modern statistical thinking from classical theories to state-of-the-art prediction algorithms. Anyone who applies statistical methods to data will value this landmark text.

Deep Learning

Автор: Goodfellow Ian, Bengio Yoshua, Courville Aaron
Название: Deep Learning
ISBN: 0262035618 ISBN-13(EAN): 9780262035613
Издательство: MIT Press
Рейтинг:
Цена: 13543.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

An introduction to a broad range of topics in deep learning, covering mathematical and conceptual background, deep learning techniques used in industry, and research perspectives.

"Written by three experts in the field, Deep Learning is the only comprehensive book on the subject."
-- Elon Musk, cochair of OpenAI; cofounder and CEO of Tesla and SpaceX

Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning.

The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models.

Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.

Автор: Winn, John (microsoft Research Ltd., Cambridge, Un
Название: Model-based machine learning
ISBN: 1498756816 ISBN-13(EAN): 9781498756815
Издательство: Taylor&Francis
Рейтинг:
Цена: 10564.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Power System Coherency and Model Reduction

Автор: Joe H. Chow
Название: Power System Coherency and Model Reduction
ISBN: 1489995129 ISBN-13(EAN): 9781489995124
Издательство: Springer
Рейтинг:
Цена: 18284.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book provides a comprehensive treatment for understanding interarea modes in large power systems and obtaining reduced-order models using the coherency concept and selective modal analysis method.

Model Reduction for Circuit Simulation

Автор: Peter Benner; Michael Hinze; E. Jan W. ter Maten
Название: Model Reduction for Circuit Simulation
ISBN: 940073283X ISBN-13(EAN): 9789400732834
Издательство: Springer
Рейтинг:
Цена: 20962.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Simulation plays a major role in the computer-aided design of integrated circuits, yet its complexities in an age of miniaturization cause time-lags in product manufacture. Model Order Reduction resolves the dilemma, and this volume covers the latest results.

Hands-On Machine Learning with Scikit-Learn, Keras, and Tensorflow: Concepts, Tools, and Techniques to Build Intelligent Systems

Автор: Geron Aurelien
Название: Hands-On Machine Learning with Scikit-Learn, Keras, and Tensorflow: Concepts, Tools, and Techniques to Build Intelligent Systems
ISBN: 1492032646 ISBN-13(EAN): 9781492032649
Издательство: Wiley
Рейтинг:
Цена: 9502.00 р.
Наличие на складе: Поставка под заказ.

Описание:

Through a series of recent breakthroughs, deep learning has boosted the entire field of machine learning. Now, even programmers who know close to nothing about this technology can use simple, efficient tools to implement programs capable of learning from data.

The updated edition of this practical book uses concrete examples, minimal theory, and three production-ready Python frameworks--scikit-learn, Keras, and TensorFlow--to help you gain an intuitive understanding of the concepts and tools for building intelligent systems. You'll learn a range of techniques, starting with simple linear regression and progressing to deep neural networks. With exercises in each chapter to help you apply what you've learned, all you need is programming experience to get started.

Permanent Magnet Spherical Motors

Автор: Bai
Название: Permanent Magnet Spherical Motors
ISBN: 9811079617 ISBN-13(EAN): 9789811079610
Издательство: Springer
Рейтинг:
Цена: 13974.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: In order to take full advantage of the concise structure of spherical motors in practical applications, magnetic-field-based sensing and control methods that utilize the existing magnetic fields of spherical motors and eliminate the need to install external sensors for feedback are proposed.

Building Machine Learning Pipelines: Automating Model Life Cycles with Tensorflow

Название: Building Machine Learning Pipelines: Automating Model Life Cycles with Tensorflow
ISBN: 1492053198 ISBN-13(EAN): 9781492053194
Издательство: Wiley
Рейтинг:
Цена: 10136.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

Companies are spending billions on machine learning projects, but it's money wasted if the models can't be deployed effectively. In this practical guide, Hannes Hapke and Catherine Nelson walk you through the steps of automating a machine learning pipeline using the TensorFlow ecosystem. You'll learn the techniques and tools that will cut deployment time from days to minutes, so that you can focus on developing new models rather than maintaining legacy systems.

Data scientists, machine learning engineers, and DevOps engineers will discover how to go beyond model development to successfully productize their data science projects, while managers will better understand the role they play in helping to accelerate these projects. The book also explores new approaches for integrating data privacy into machine learning pipelines.

  • Understand the machine learning management lifecycle
  • Implement data pipelines with Apache Airflow and Kubeflow Pipelines
  • Work with data using TensorFlow tools like ML Metadata, TensorFlow Data Validation, and TensorFlow Transform
  • Analyze models with TensorFlow Model Analysis and ship them with the TFX Model Pusher Component after the ModelValidator TFX Component confirmed that the analysis results are an improvement
  • Deploy models in a variety of environments with TensorFlow Serving, TensorFlow Lite, and TensorFlow.js
  • Learn methods for adding privacy, including differential privacy with TensorFlow Privacy and federated learning with TensorFlow Federated
  • Design model feedback loops to increase your data sets and learn when to update your machine learning models


Machine Learning Design Patterns: Solutions to Common Challenges in Data Preparation, Model Building, and Mlops

Автор: Lakshmanan Valliappa, Robinson Sara, Munn Michael
Название: Machine Learning Design Patterns: Solutions to Common Challenges in Data Preparation, Model Building, and Mlops
ISBN: 1098115783 ISBN-13(EAN): 9781098115784
Издательство: Wiley
Рейтинг:
Цена: 8394.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The design patterns in this book capture best practices and solutions to recurring problems in machine learning. The authors catalog proven methods to help data scientists tackle common problems throughout the ML process. These design patterns codify the experience of hundreds of experts into straightforward, approachable advice.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия