Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Data Mining, Ye


Варианты приобретения
Цена: 9645.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Ye
Название:  Data Mining
ISBN: 9781138073661
Издательство: Taylor&Francis
Классификация:

ISBN-10: 1138073660
Обложка/Формат: Paperback
Страницы: 349
Вес: 0.65 кг.
Дата издания: 21.04.2017
Серия: Human factors and ergonomics
Язык: English
Иллюстрации: 68 tables, black and white; 57 illustrations, black and white
Размер: 157 x 234 x 27
Читательская аудитория: Tertiary education (us: college)
Ключевые слова: Probability & statistics, BUSINESS & ECONOMICS / Statistics,COMPUTERS / Databases / Data Mining,TECHNOLOGY & ENGINEERING / Operations Research
Основная тема: Statistical Computing
Подзаголовок: Theories, Algorithms, and Examples
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Европейский союз
Описание:

New technologies have enabled us to collect massive amounts of data in many fields. However, our pace of discovering useful information and knowledge from these data falls far behind our pace of collecting the data. Data Mining: Theories, Algorithms, and Examples introduces and explains a comprehensive set of data mining algorithms from various data mining fields. The book reviews theoretical rationales and procedural details of data mining algorithms, including those commonly found in the literature and those presenting considerable difficulty, using small data examples to explain and walk through the algorithms.

The book covers a wide range of data mining algorithms, including those commonly found in data mining literature and those not fully covered in most of existing literature due to their considerable difficulty. The book presents a list of software packages that support the data mining algorithms, applications of the data mining algorithms with references, and exercises, along with the solutions manual and PowerPoint slides of lectures.

The author takes a practical approach to data mining algorithms so that the data patterns produced can be fully interpreted. This approach enables students to understand theoretical and operational aspects of data mining algorithms and to manually execute the algorithms for a thorough understanding of the data patterns produced by them.




Trustworthy Online Controlled Experiments: A Practical Guide to A/B Testing

Автор: Ron Kohavi, Diane Tang, Ya Xu
Название: Trustworthy Online Controlled Experiments: A Practical Guide to A/B Testing
ISBN: 1108724264 ISBN-13(EAN): 9781108724265
Издательство: Cambridge Academ
Рейтинг:
Цена: 6758.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Getting numbers is easy; getting trustworthy numbers is hard. From experimentation leaders at Amazon, Google, LinkedIn, and Microsoft, this guide to accelerating innovation using A/B tests includes practical examples, pitfalls, and advice for students and industry professionals, plus deeper dives into advanced topics for experienced practitioners.

Data Science For Business: What You Need To Know About Data Mining And Dataanalytic Thinking

Автор: Foster Provost
Название: Data Science For Business: What You Need To Know About Data Mining And Dataanalytic Thinking
ISBN: 1449361323 ISBN-13(EAN): 9781449361327
Издательство: Wiley
Рейтинг:
Цена: 6334.00 р.
Наличие на складе: Есть (1 шт.)
Описание: This broad, deep, but not-too-technical guide introduces you to the fundamental principles of data science and walks you through the "data-analytic thinking" necessary for extracting useful knowledge and business value from the data you collect.

Data Mining. Practical Machine Learning Tools and Techniques, 4 ed.

Автор: Witten, Ian H.
Название: Data Mining. Practical Machine Learning Tools and Techniques, 4 ed.
ISBN: 0128042915 ISBN-13(EAN): 9780128042915
Издательство: Elsevier Science
Рейтинг:
Цена: 9262.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

Data Mining: Practical Machine Learning Tools and Techniques, Fourth Edition, offers a thorough grounding in machine learning concepts, along with practical advice on applying these tools and techniques in real-world data mining situations. This highly anticipated fourth edition of the most acclaimed work on data mining and machine learning teaches readers everything they need to know to get going, from preparing inputs, interpreting outputs, evaluating results, to the algorithmic methods at the heart of successful data mining approaches.

Extensive updates reflect the technical changes and modernizations that have taken place in the field since the last edition, including substantial new chapters on probabilistic methods and on deep learning. Accompanying the book is a new version of the popular WEKA machine learning software from the University of Waikato. Authors Witten, Frank, Hall, and Pal include today's techniques coupled with the methods at the leading edge of contemporary research.

Please visit the book companion website at https: //www.cs.waikato.ac.nz/ ml/weka/book.html.

It contains

  • Powerpoint slides for Chapters 1-12. This is a very comprehensive teaching resource, with many PPT slides covering each chapter of the book
  • Online Appendix on the Weka workbench; again a very comprehensive learning aid for the open source software that goes with the book
  • Table of contents, highlighting the many new sections in the 4th edition, along with reviews of the 1st edition, errata, etc.

  • Provides a thorough grounding in machine learning concepts, as well as practical advice on applying the tools and techniques to data mining projects
  • Presents concrete tips and techniques for performance improvement that work by transforming the input or output in machine learning methods
  • Includes a downloadable WEKA software toolkit, a comprehensive collection of machine learning algorithms for data mining tasks-in an easy-to-use interactive interface
  • Includes open-access online courses that introduce practical applications of the material in the book
Music Data Mining

Автор: Tao Li; Mitsunori Ogihara; George Tzanetakis
Название: Music Data Mining
ISBN: 1439835527 ISBN-13(EAN): 9781439835524
Издательство: Taylor&Francis
Рейтинг:
Цена: 16843.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

The research area of music information retrieval has gradually evolved to address the challenges of effectively accessing and interacting large collections of music and associated data, such as styles, artists, lyrics, and reviews. Bringing together an interdisciplinary array of top researchers, Music Data Mining presents a variety of approaches to successfully employ data mining techniques for the purpose of music processing.

The book first covers music data mining tasks and algorithms and audio feature extraction, providing a framework for subsequent chapters. With a focus on data classification, it then describes a computational approach inspired by human auditory perception and examines instrument recognition, the effects of music on moods and emotions, and the connections between power laws and music aesthetics. Given the importance of social aspects in understanding music, the text addresses the use of the Web and peer-to-peer networks for both music data mining and evaluating music mining tasks and algorithms. It also discusses indexing with tags and explains how data can be collected using online human computation games. The final chapters offer a balanced exploration of hit song science as well as a look at symbolic musicology and data mining.

The multifaceted nature of music information often requires algorithms and systems using sophisticated signal processing and machine learning techniques to better extract useful information. An excellent introduction to the field, this volume presents state-of-the-art techniques in music data mining and information retrieval to create novel ways of interacting with large music collections.

Materials Informatics: Methods, Tools, and Applications

Автор: Isayev O
Название: Materials Informatics: Methods, Tools, and Applications
ISBN: 3527341218 ISBN-13(EAN): 9783527341214
Издательство: Wiley
Рейтинг:
Цена: 15357.00 р.
Наличие на складе: Поставка под заказ.

Описание: Provides everything readers need to know for applying the power of informatics to materials science

There is a tremendous interest in materials informatics and application of data mining to materials science. This book is a one-stop guide to the latest advances in these emerging fields. Bridging the gap between materials science and informatics, it introduces readers to up-to-date data mining and machine learning methods. It also provides an overview of state-of-the-art software and tools. Case studies illustrate the power of materials informatics in guiding the experimental discovery of new materials.

Materials Informatics: Methods, Tools and Applications is presented in two parts?Methodological Aspects of Materials Informatics and Practical Aspects and Applications. The first part focuses on developments in software, databases, and high-throughput computational activities. Chapter topics include open quantum materials databases; the ICSD database; open crystallography databases; and more. The second addresses the latest developments in data mining and machine learning for materials science. Its chapters cover genetic algorithms and crystal structure prediction; MQSPR modeling in materials informatics; prediction of materials properties; amongst others.

-Bridges the gap between materials science and informatics
-Covers all the known methodologies and applications of materials informatics
-Presents case studies that illustrate the power of materials informatics in guiding the experimental quest for new materials
-Examines the state-of-the-art software and tools being used today

Materials Informatics: Methods, Tools and Applications is a must-have resource for materials scientists, chemists, and engineers interested in the methods of materials informatics.

Time and Causality Across the Sciences

Автор: Samantha Kleinberg
Название: Time and Causality Across the Sciences
ISBN: 1108476678 ISBN-13(EAN): 9781108476676
Издательство: Cambridge Academ
Рейтинг:
Цена: 9186.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book provides an entry point for researchers in any field, bringing together perspectives collected from a large body of work on causality across disciplines. Topics include whether quantum mechanics allows causes to precede their effects, the integration of mechanisms, and insight into the role played by intervention and timing information.

Statistics, data mining, and machine learning in astronomy :

Автор: Ivezic?, Z?eljko,
Название: Statistics, data mining, and machine learning in astronomy :
ISBN: 0691198306 ISBN-13(EAN): 9780691198309
Издательство: Wiley
Рейтинг:
Цена: 12355.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

Statistics, Data Mining, and Machine Learning in Astronomy is the essential introduction to the statistical methods needed to analyze complex data sets from astronomical surveys such as the Panoramic Survey Telescope and Rapid Response System, the Dark Energy Survey, and the Large Synoptic Survey Telescope. Now fully updated, it presents a wealth of practical analysis problems, evaluates the techniques for solving them, and explains how to use various approaches for different types and sizes of data sets. Python code and sample data sets are provided for all applications described in the book. The supporting data sets have been carefully selected from contemporary astronomical surveys and are easy to download and use. The accompanying Python code is publicly available, well documented, and follows uniform coding standards. Together, the data sets and code enable readers to reproduce all the figures and examples, engage with the different methods, and adapt them to their own fields of interest.

An accessible textbook for students and an indispensable reference for researchers, this updated edition features new sections on deep learning methods, hierarchical Bayes modeling, and approximate Bayesian computation. The chapters have been revised throughout and the astroML code has been brought completely up to date.

  • Fully revised and expanded
  • Describes the most useful statistical and data-mining methods for extracting knowledge from huge and complex astronomical data sets
  • Features real-world data sets from astronomical surveys
  • Uses a freely available Python codebase throughout
  • Ideal for graduate students, advanced undergraduates, and working astronomers

Data Science for Business: Predictive Modeling, Data Mining, Data Analytics, Data Warehousing, Data Visualization, Regression Analysis, Database

Автор: Jones Herbert
Название: Data Science for Business: Predictive Modeling, Data Mining, Data Analytics, Data Warehousing, Data Visualization, Regression Analysis, Database
ISBN: 1647483263 ISBN-13(EAN): 9781647483265
Издательство: Неизвестно
Рейтинг:
Цена: 4137.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Data science has a huge impact on how companies conduct business, and those who don`t learn about this revolutionaryfield could be left behind. You see, data science will help you make better decisions, know what products and services to release, and how to provide better service to your customers.

Big Data, Mining, and Analytics

Автор: Kudyba, Stephan
Название: Big Data, Mining, and Analytics
ISBN: 0367378817 ISBN-13(EAN): 9780367378813
Издательство: Taylor&Francis
Рейтинг:
Цена: 9033.00 р.
Наличие на складе: Поставка под заказ.

Описание:

There is an ongoing data explosion transpiring that will make previous creations, collections, and storage of data look trivial. Big Data, Mining, and Analytics: Components of Strategic Decision Making ties together big data, data mining, and analytics to explain how readers can leverage them to extract valuable insights from their data. Facilitating a clear understanding of big data, it supplies authoritative insights from expert contributors into leveraging data resources, including big data, to improve decision making.

Illustrating basic approaches of business intelligence to the more complex methods of data and text mining, the book guides readers through the process of extracting valuable knowledge from the varieties of data currently being generated in the brick and mortar and internet environments. It considers the broad spectrum of analytics approaches for decision making, including dashboards, OLAP cubes, data mining, and text mining.

  • Includes a foreword by Thomas H. Davenport, Distinguished Professor, Babson College; Fellow, MIT Center for Digital Business; and Co-Founder, International Institute for Analytics
  • Introduces text mining and the transforming of unstructured data into useful information
  • Examines real time wireless medical data acquisition for today's healthcare and data mining challenges
  • Presents the contributions of big data experts from academia and industry, including SAS
  • Highlights the most exciting emerging technologies for big data

Filled with examples that illustrate the value of analytics throughout, the book outlines a conceptual framework for data modeling that can help you immediately improve your own analytics and decision-making processes. It also provides in-depth coverage of analyzing unstructured data with text mining methods.

Data Mining with R

Автор: Torgo
Название: Data Mining with R
ISBN: 1439810184 ISBN-13(EAN): 9781439810187
Издательство: Taylor&Francis
Рейтинг:
Цена: 9951.00 р.
Наличие на складе: Поставка под заказ.

Описание: This hands-on book uses practical examples to illustrate the power of R and data mining. Assuming no prior knowledge of R or data mining/statistical techniques, it covers a diverse set of problems that pose different challenges in terms of size, type of data, goals of analysis, and analytical tools. The main data mining processes and techniques are presented through detailed, real-world case studies. With these case studies, the author supplies all necessary steps, code, and data. Mirroring the do-it-yourself approach of the text, the supporting website provides data sets and R code.

Handbook of Statistical Analysis and Data Mining Applications, 2 ed.

Автор: Robert Nisbet , Gary Miner, Ken Yale
Название: Handbook of Statistical Analysis and Data Mining Applications, 2 ed.
ISBN: 0124166326 ISBN-13(EAN): 9780124166325
Издательство: Elsevier Science
Рейтинг:
Цена: 13304.00 р.
Наличие на складе: Поставка под заказ.

Описание:

Handbook of Statistical Analysis and Data Mining Applications, Second Edition, is a comprehensive professional reference book that guides business analysts, scientists, engineers and researchers, both academic and industrial, through all stages of data analysis, model building and implementation. The handbook helps users discern technical and business problems, understand the strengths and weaknesses of modern data mining algorithms and employ the right statistical methods for practical application.

This book is an ideal reference for users who want to address massive and complex datasets with novel statistical approaches and be able to objectively evaluate analyses and solutions. It has clear, intuitive explanations of the principles and tools for solving problems using modern analytic techniques and discusses their application to real problems in ways accessible and beneficial to practitioners across several areas--from science and engineering, to medicine, academia and commerce.

  • Includes input by practitioners for practitioners
  • Includes tutorials in numerous fields of study that provide step-by-step instruction on how to use supplied tools to build models
  • Contains practical advice from successful real-world implementations
  • Brings together, in a single resource, all the information a beginner needs to understand the tools and issues in data mining to build successful data mining solutions
  • Features clear, intuitive explanations of novel analytical tools and techniques, and their practical applications
Data Mining for Business Analytics: Concepts, Techniques, and Applications with XLMiner

Автор: Galit Shmueli, Peter C. Bruce, Nitin R. Patel
Название: Data Mining for Business Analytics: Concepts, Techniques, and Applications with XLMiner
ISBN: 1118729277 ISBN-13(EAN): 9781118729274
Издательство: Wiley
Рейтинг:
Цена: 17741.00 р.
Наличие на складе: Поставка под заказ.

Описание: Data Mining for Business Analytics: Concepts, Techniques, and Applications in XLMiner(R), Third Edition presents an applied approach to data mining and predictive analytics with clear exposition, hands-on exercises, and real-life case studies.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия