Описание: An attractive book on the intersection of analysis and numerical analysis, deriving classical boundary integral equations arising from the potential theory and acoustics. This self-contained monograph can be used as a textbook by graduate/postgraduate students. It also contains a lot of carefully chosen exercises.
Описание: This book discusses almost periodic and almost automorphic solutions to abstract integro-differential Volterra equations that are degenerate in time, and in particular equations whose solutions are governed by (degenerate) solution operator families with removable singularities at zero. It particularly covers abstract fractional equations and inclusions with multivalued linear operators as well as abstract fractional semilinear Cauchy problems.
Автор: P.H. Rabinowitz; A. Ambrosetti; I. Ekeland; E.J. Z Название: Periodic Solutions of Hamiltonian Systems and Related Topics ISBN: 9027725535 ISBN-13(EAN): 9789027725530 Издательство: Springer Рейтинг: Цена: 28929.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Proceedings of the NATO Advanced Research Workshop, Il Ciocco, Italy, October 13-17, 1986
Автор: Bernold Fiedler Название: Global Bifurcation of Periodic Solutions with Symmetry ISBN: 3540192344 ISBN-13(EAN): 9783540192343 Издательство: Springer Рейтинг: Цена: 3487.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Suppose one encounters a continuous time dynamical system with some built-in symmetry. Should one expect periodic motions which somehow reflect this symmetry? And how would periodicity harmonize with symmetry? This book probes these questions.
Автор: A. Ambrosetti; V. Coti-Zelati Название: Periodic Solutions of Singular Lagrangian Systems ISBN: 1461267056 ISBN-13(EAN): 9781461267058 Издательство: Springer Рейтинг: Цена: 13974.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Thismonographdealswiththeexistenceofperiodicmotionsof Lagrangiansystemswith ndegreesoffreedom ij + V'(q) =0, where Visasingularpotential.Aprototypeofsuchaproblem, evenifitisnottheonlyphysicallyinterestingone, istheKepler problem .. q 0 q+yqr= . This, jointlywiththemoregeneralN-bodyproblem, hasalways beentheobjectofagreatdealofresearch.Mostofthoseresults arebasedonperturbationmethods, andmakeuseofthespecific featuresoftheKeplerpotential. OurapproachismoreonthelinesofNonlinearFunctional Analysis: ourmainpurposeistogiveafunctionalframefor systemswithsingularpotentials, includingtheKeplerandthe N-bodyproblemasparticularcases.PreciselyweuseCritical PointTheorytoobtainexistenceresults, qualitativeinnature, whichholdtrueforbroadclassesofpotentials.Thishighlights thatthevariationalmethods, whichhavebeenemployedtoob- tainimportantadvancesinthestudyofregularHamiltonian systems, canbesuccessfallyusedtohandlesingularpotentials aswell. Theresearchonthistopicisstillinevolution, andtherefore theresultswewillpresentarenottobeintendedasthefinal ones. Indeedamajorpurposeofourdiscussionistopresent methodsandtoolswhichhavebeenusedinstudyingsuchprob- lems. Vlll PREFACE Partofthematerialofthisvolumehasbeenpresentedina seriesoflecturesgivenbytheauthorsatSISSA, Trieste, whom wewouldliketothankfortheirhospitalityandsupport. We wishalsotothankUgoBessi, PaoloCaldiroli, FabioGiannoni, LouisJeanjean, LorenzoPisani, EnricoSerra, KazunakaTanaka, EnzoVitillaroforhelpfulsuggestions. May26,1993 Notation n 1.For x, yE IR, x. ydenotestheEuclideanScalarproduct, and IxltheEuclideannorm. 2. meas(A)denotestheLebesguemeasureofthesubset Aof n IR - 3.Wedenoteby ST = 0, T]/{a, T}theunitarycirclepara- metrizedby t E 0, T].Wewillalsowrite SI= ST=I. n 1 n 4.Wewillwrite sn = {xE IR +: Ixl =I}andn = IR \{O}. n 5.Wedenoteby LP( O, T], IR ),1 p +00, theLebesgue spaces, equippedwiththestandardnorm lIulip. l n l n 6. H (ST, IR )denotestheSobolevspaceof u E H,2(0, T; IR ) suchthat u(O) = u(T).Thenormin HIwillbedenoted by lIull2 = lIull + lIull - 7.Wedenoteby(-1-)and11-11respectivelythescalarproduct andthenormoftheHilbertspace E. 8.For uE E, EHilbertorBanachspace, wedenotetheball ofcenter uandradiusrby B(u, r) = {vE E: lIu- vii r}.Wewillalsowrite B = B(O, r). r 1 1 9.WesetA (n) = {uE H (St, n)}. k 10.For VE C (1Rxil, IR)wedenoteby V'(t, x)thegradient of Vwithrespectto x. l 11.Given f E C (M, IR), MHilbertmanifold, welet r = {uEM: f(u) a}, f-l(a, b) = {uE E: a f(u) b}. x NOTATION 12.Given f E C1(M, JR), MHilbertmanifold, wewilldenote by Zthesetofcriticalpointsof fon Mandby Zctheset Z U f-l(c, c). 13.Givenasequence UnE E, EHilbertspace, by Un ---"" Uwe willmeanthatthesequence Unconvergesweaklyto u. 14.With (E)wewilldenotethesetoflinearandcontinuous operatorson E. 15.With Ck''''(A, JR)wewilldenotethesetoffunctions ffrom AtoJR, ktimesdifferentiablewhosek-derivativeisHolder continuousofexponent0: . Main Assumptions Wecollecthere, forthereader'sconvenience, themainassump- tionsonthepotential Vusedthroughoutthebook. (VO) VEC1(lRXO, lR), V(t+T, x)=V(t, X) V(t, x)ElRXO, (VI) V(t, x)
Автор: A. Ambrosetti; V. Coti-Zelati Название: Periodic Solutions of Singular Lagrangian Systems ISBN: 0817636552 ISBN-13(EAN): 9780817636555 Издательство: Springer Рейтинг: Цена: 14673.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: A summary and synthesis of recent research demonstrating that variational methods can be used to successfully handle systems with singular potential, the Lagrangian systems. The classic cases of the Kepler problem and the N-body problem are used as specific examples.
Автор: Eduard Reithmeier Название: Periodic Solutions of Nonlinear Dynamical Systems ISBN: 3540545123 ISBN-13(EAN): 9783540545125 Издательство: Springer Рейтинг: Цена: 3492.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Addressing mathematicians and engineers working with nonlinear dynamics, this monograph describes the multiple shooting method, which is employed in numerically computing limit cycles. The theory is supported by numerous examples, mainly from the field of nonlinear vibrations.
Описание: The authors prove the existence and the linear stability of small amplitude time quasi-periodic standing wave solutions (i.e. periodic and even in the space variable $x$) of a 2-dimensional ocean with infinite depth under the action of gravity and surface tension. Such an existence result is obtained for all the values of the surface tension belonging to a Borel set of asymptotically full Lebesgue measure.
Автор: Otto Vejvoda; L. Herrmann; V. Lovicar; M. Sova; I. Название: Partial differential equations: time-periodic solutions ISBN: 9024727723 ISBN-13(EAN): 9789024727728 Издательство: Springer Рейтинг: Цена: 34799.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Автор: N.S. Bakhvalov; G. Panasenko Название: Homogenisation: Averaging Processes in Periodic Media ISBN: 9401075069 ISBN-13(EAN): 9789401075060 Издательство: Springer Рейтинг: Цена: 15372.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: si j`avait su comment en revenir, One service mathematics has rendered the je n`y semis point all,,: human race. Applying a simple rewriting rule to the quote on the right above one finds such statements as: `One service topology has rendered mathematical physics .. `One service category theory has rendered mathematics ..
Автор: Hendrik W. Broer; George B. Huitema; Mikhail B. Se Название: Quasi-Periodic Motions in Families of Dynamical Systems ISBN: 3540620257 ISBN-13(EAN): 9783540620259 Издательство: Springer Рейтинг: Цена: 6282.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book is devoted to the phenomenon of quasi-periodic motion in dynamical systems. On the one hand, Hamiltonian systems occur that are in complete order: these are the integrable systems where all motion is confined to invariant tori.
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru