Nonparametric Statistics: Theory And Methods, Deshpande Jayant V, Naik-nimbalkar Uttara, Dewan Isha
Автор: Alexandre B. Tsybakov Название: Introduction to Nonparametric Estimation ISBN: 0387790519 ISBN-13(EAN): 9780387790510 Издательство: Springer Рейтинг: Цена: 15372.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Presents basic nonparametric regression and density estimators and analyzes their properties. This book covers minimax lower bounds, and develops advanced topics such as: Pinsker`s theorem, oracle inequalities, Stein shrinkage, and sharp minimax adaptivity.
Автор: Wasserman Название: All of Nonparametric Statistics ISBN: 0387251456 ISBN-13(EAN): 9780387251455 Издательство: Springer Рейтинг: Цена: 20962.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: It covers a wide range of topics including the bootstrap, the nonparametric delta method, nonparametric regression, density estimation, orthogonal function methods, minimax estimation, nonparametric confidence sets, and wavelets.
Автор: Conover, W.J. Название: Practical Nonparametric Statistics ISBN: 0471160687 ISBN-13(EAN): 9780471160687 Издательство: Wiley Рейтинг: Цена: 36741.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This highly-regarded text serves as a quick reference book which offers clear, concise instructions on how and when to use the most popular nonparametric procedures.
Автор: Nussbaum E Michael Название: Categorical and Nonparametric Data Analysis ISBN: 1138787825 ISBN-13(EAN): 9781138787827 Издательство: Taylor&Francis Рейтинг: Цена: 12248.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Featuring in-depth coverage of categorical and nonparametric statistics, this book provides a conceptual framework for choosing the most appropriate type of test in various research scenarios. Class tested at the University of Nevada, the book's clear explanations of the underlying assumptions, computer simulations, and Exploring the Concept boxes help reduce reader anxiety. Problems inspired by actual studies provide meaningful illustrations of the techniques. The underlying assumptions of each test and the factors that impact validity and statistical power are reviewed so readers can explain their assumptions and how tests work in future publications. Numerous examples from psychology, education, and other social sciences demonstrate varied applications of the material. Basic statistics and probability are reviewed for those who need a refresher. Mathematical derivations are placed in optional appendices for those interested in this detailed coverage. Highlights include the following: Unique coverage of categorical and nonparametric statistics better prepares readers to select the best technique for their particular research project; however, some chapters can be omitted entirely if preferred. Step-by-step examples of each test help readers see how the material is applied in a variety of disciplines. Although the book can be used with any program, examples of how to use the tests in SPSS and Excel foster conceptual understanding. Exploring the Concept boxes integrated throughout prompt students to review key material and draw links between the concepts to deepen understanding. Problems in each chapter help readers test their understanding of the material. Emphasis on selecting tests that maximize power helps readers avoid "marginally" significant results. Website (www.routledge.com/9781138787827) features datasets for the book's examples and problems, and for the instructor, PowerPoint slides, sample syllabi, answers to the even-numbered problems, and Excel data sets for lecture purposes. Intended for individual or combined graduate or advanced undergraduate courses in categorical and nonparametric data analysis, cross-classified data analysis, advanced statistics and/or quantitative techniques taught in psychology, education, human development, sociology, political science, and other social and life sciences, the book also appeals to researchers in these disciplines. The nonparametric chapters can be deleted if preferred. Prerequisites include knowledge of t tests and ANOVA.
Автор: Ghosal, Subhashis. Название: Fundamentals of Nonparametric Bayesian Inference ISBN: 0521878268 ISBN-13(EAN): 9780521878265 Издательство: Cambridge Academ Рейтинг: Цена: 12989.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Written by top researchers, this self-contained text is the authoritative account of Bayesian nonparametrics, a nearly universal framework for inference in statistics and machine learning, with practical use in all areas of science, including economics and biostatistics. Appendices with prerequisites and numerous exercises support its use for graduate courses.
Автор: Dieter Rasch; Moti Lal Tiku Название: Robustness of Statistical Methods and Nonparametric Statistics ISBN: 9400965303 ISBN-13(EAN): 9789400965300 Издательство: Springer Рейтинг: Цена: 11173.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Автор: Muller, P., Quintana, F.A., Jara, A., Hanson, T. Название: Bayesian Nonparametric Data Analysis ISBN: 3319189670 ISBN-13(EAN): 9783319189673 Издательство: Springer Рейтинг: Цена: 11878.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book reviews nonparametric Bayesian methods and models that have proven useful in the context of data analysis. In selecting specific nonparametric models, simpler and more traditional models are favored over specialized ones.
Автор: M. Luz G?miz; K. B. Kulasekera; Nikolaos Limnios; Название: Applied Nonparametric Statistics in Reliability ISBN: 1447126343 ISBN-13(EAN): 9781447126348 Издательство: Springer Рейтинг: Цена: 23757.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This volume focuses on the latest statistical methods used to estimate the performance measures of reliability systems that operate under different conditions. It includes numerous techniques such as nonparametric estimation and lifetime regression analysis.
Автор: Bhattacharya Название: Nonparametric Inference on Manifolds ISBN: 1107484316 ISBN-13(EAN): 9781107484313 Издательство: Cambridge Academ Рейтинг: Цена: 6019.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Ideal for statisticians, this book will also interest probabilists, mathematicians, computer scientists, and morphometricians with mathematical training. It presents a systematic introduction to a general nonparametric theory of statistics on manifolds, with emphasis on manifolds of shapes. The theory has important applications in medical diagnostics, image analysis and machine vision.
Featuring in-depth coverage of categorical and nonparametric statistics, this book provides a conceptual framework for choosing the most appropriate type of test in various research scenarios. Class tested at the University of Nevada, the book's clear explanations of the underlying assumptions, computer simulations, and Exploring the Concept boxes help reduce reader anxiety. Problems inspired by actual studies provide meaningful illustrations of the techniques. The underlying assumptions of each test and the factors that impact validity and statistical power are reviewed so readers can explain their assumptions and how tests work in future publications. Numerous examples from psychology, education, and other social sciences demonstrate varied applications of the material. Basic statistics and probability are reviewed for those who need a refresher. Mathematical derivations are placed in optional appendices for those interested in this detailed coverage.
Highlights include the following:
Unique coverage of categorical and nonparametric statistics better prepares readers to select the best technique for their particular research project; however, some chapters can be omitted entirely if preferred.
Step-by-step examples of each test help readers see how the material is applied in a variety of disciplines.
Although the book can be used with any program, examples of how to use the tests in SPSS and Excel foster conceptual understanding.
Exploring the Concept boxes integrated throughout prompt students to review key material and draw links between the concepts to deepen understanding.
Problems in each chapter help readers test their understanding of the material.
Emphasis on selecting tests that maximize power helps readers avoid "marginally" significant results.
Website (www.routledge.com/9781138787827) features datasets for the book's examples and problems, and for the instructor, PowerPoint slides, sample syllabi, answers to the even-numbered problems, and Excel data sets for lecture purposes.
Intended for individual or combined graduate or advanced undergraduate courses in categorical and nonparametric data analysis, cross-classified data analysis, advanced statistics and/or quantitative techniques taught in psychology, education, human development, sociology, political science, and other social and life sciences, the book also appeals to researchers in these disciplines. The nonparametric chapters can be deleted if preferred. Prerequisites include knowledge of t tests and ANOVA.
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru