Applied Statistics and Multivariate Data Analysis, Thomas Cleff
Автор: Gelman Название: Bayesian Data Analysis, Third Edition ISBN: 1439840954 ISBN-13(EAN): 9781439840955 Издательство: Taylor&Francis Рейтинг: Цена: 11088.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Winner of the 2016 De Groot Prize from the International Society for Bayesian Analysis Now in its third edition, this classic book is widely considered the leading text on Bayesian methods, lauded for its accessible, practical approach to analyzing data and solving research problems. Bayesian Data Analysis, Third Edition continues to take an applied approach to analysis using up-to-date Bayesian methods. The authors—all leaders in the statistics community—introduce basic concepts from a data-analytic perspective before presenting advanced methods. Throughout the text, numerous worked examples drawn from real applications and research emphasize the use of Bayesian inference in practice. New to the Third Edition Four new chapters on nonparametric modeling Coverage of weakly informative priors and boundary-avoiding priors Updated discussion of cross-validation and predictive information criteria Improved convergence monitoring and effective sample size calculations for iterative simulation Presentations of Hamiltonian Monte Carlo, variational Bayes, and expectation propagation New and revised software code The book can be used in three different ways. For undergraduate students, it introduces Bayesian inference starting from first principles. For graduate students, the text presents effective current approaches to Bayesian modeling and computation in statistics and related fields. For researchers, it provides an assortment of Bayesian methods in applied statistics. Additional materials, including data sets used in the examples, solutions to selected exercises, and software instructions, are available on the book’s web page.
Автор: Pituch Keenan A Название: Applied Multivariate Statistics for the Social Sciences ISBN: 0415836662 ISBN-13(EAN): 9780415836661 Издательство: Taylor&Francis Рейтинг: Цена: 17609.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Noted for its breadth and depth of coverage of multivariate statistics and its emphasis on power, this classic text focuses on a conceptual understanding of the material rather than on proving results. Numerous examples, along with use of SAS and SPSS, indicate what the numbers mean and how to interpret the results.
Автор: Sternstein Martin Название: Barron`s AP Statistics, 8th Edition ISBN: 1438004982 ISBN-13(EAN): 9781438004983 Издательство: Ingram Цена: 2619.00 р. Наличие на складе: Нет в наличии.
Описание: This manual s in-depth preparation for the AP Statistics exam features the 35 absolutely best AP Statistics exam hints found anywhere, and includes:
A diagnostic test and five full-length and up-to-date practice exams
All test questions answered and explained
Additional multiple-choice and free-response questions with answers
A 15-chapter subject review covering all test topics
A guide to basic uses of TI-83/TI-84 calculators The manual can be purchased alone or with an enclosed CD-ROM that presents two additional practice tests with automatic scoring of the multiple-choice questions, as well as a second CD-ROM introducing the TI-Nspire. BONUS ONLINE PRACTICE TEST Students who purchase this book or package will also get FREE access to one additional full-length online AP Statistics test with all questions answered and explained."
Автор: Joseph K. Blitzstein, Jessica Hwang Название: Introduction to Probability, Second Edition ISBN: 1138369918 ISBN-13(EAN): 9781138369917 Издательство: Taylor&Francis Рейтинг: Цена: 11176.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Assumes one-semester of calculus. "Stories" make distributions (Normal, Binomial, Poisson that are widely-used in statistics) easier to remember, understand. Many books write down formulas without explaining clearly why these particular distributions are important or how they are all connected.
A brand new, fully updated edition of a popular classic on matrix differential calculus with applications in statistics and econometrics
This exhaustive, self-contained book on matrix theory and matrix differential calculus provides a treatment of matrix calculus based on differentials and shows how easy it is to use this theory once you have mastered the technique. Jan Magnus, who, along with the late Heinz Neudecker, pioneered the theory, develops it further in this new edition and provides many examples along the way to support it.
Matrix calculus has become an essential tool for quantitative methods in a large number of applications, ranging from social and behavioral sciences to econometrics. It is still relevant and used today in a wide range of subjects such as the biosciences and psychology. Matrix Differential Calculus with Applications in Statistics and Econometrics, Third Edition contains all of the essentials of multivariable calculus with an emphasis on the use of differentials. It starts by presenting a concise, yet thorough overview of matrix algebra, then goes on to develop the theory of differentials. The rest of the text combines the theory and application of matrix differential calculus, providing the practitioner and researcher with both a quick review and a detailed reference.
Fulfills the need for an updated and unified treatment of matrix differential calculus
Contains many new examples and exercises based on questions asked of the author over the years
Covers new developments in field and features new applications
Written by a leading expert and pioneer of the theory
Part of the Wiley Series in Probability and Statistics
Matrix Differential Calculus With Applications in Statistics and Econometrics Third Edition is an ideal text for graduate students and academics studying the subject, as well as for postgraduates and specialists working in biosciences and psychology.
Автор: Jamie D. Riggs Название: Handbook for Applied Modeling: Non-Gaussian and Correlated Data ISBN: 1316601056 ISBN-13(EAN): 9781316601051 Издательство: Cambridge Academ Рейтинг: Цена: 6019.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Designed for the applied practitioner, this book is a compact, entry-level guide to modeling and analyzing data that fail idealized assumptions. It explains and demonstrates core techniques, common pitfalls and data issues, and interpretation of model results, all with a focus on application, utility, and real-life data.
Автор: Nussbaum E Michael Название: Categorical and Nonparametric Data Analysis ISBN: 1138787825 ISBN-13(EAN): 9781138787827 Издательство: Taylor&Francis Рейтинг: Цена: 12248.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Featuring in-depth coverage of categorical and nonparametric statistics, this book provides a conceptual framework for choosing the most appropriate type of test in various research scenarios. Class tested at the University of Nevada, the book's clear explanations of the underlying assumptions, computer simulations, and Exploring the Concept boxes help reduce reader anxiety. Problems inspired by actual studies provide meaningful illustrations of the techniques. The underlying assumptions of each test and the factors that impact validity and statistical power are reviewed so readers can explain their assumptions and how tests work in future publications. Numerous examples from psychology, education, and other social sciences demonstrate varied applications of the material. Basic statistics and probability are reviewed for those who need a refresher. Mathematical derivations are placed in optional appendices for those interested in this detailed coverage. Highlights include the following: Unique coverage of categorical and nonparametric statistics better prepares readers to select the best technique for their particular research project; however, some chapters can be omitted entirely if preferred. Step-by-step examples of each test help readers see how the material is applied in a variety of disciplines. Although the book can be used with any program, examples of how to use the tests in SPSS and Excel foster conceptual understanding. Exploring the Concept boxes integrated throughout prompt students to review key material and draw links between the concepts to deepen understanding. Problems in each chapter help readers test their understanding of the material. Emphasis on selecting tests that maximize power helps readers avoid "marginally" significant results. Website (www.routledge.com/9781138787827) features datasets for the book's examples and problems, and for the instructor, PowerPoint slides, sample syllabi, answers to the even-numbered problems, and Excel data sets for lecture purposes. Intended for individual or combined graduate or advanced undergraduate courses in categorical and nonparametric data analysis, cross-classified data analysis, advanced statistics and/or quantitative techniques taught in psychology, education, human development, sociology, political science, and other social and life sciences, the book also appeals to researchers in these disciplines. The nonparametric chapters can be deleted if preferred. Prerequisites include knowledge of t tests and ANOVA.
Автор: Bradley Efron and Trevor Hastie Название: Computer Age Statistical Inference ISBN: 1107149894 ISBN-13(EAN): 9781107149892 Издательство: Cambridge Academ Рейтинг: Цена: 9029.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The twenty-first century has seen a breathtaking expansion of statistical methodology, both in scope and in influence. 'Big data', 'data science', and 'machine learning' have become familiar terms in the news, as statistical methods are brought to bear upon the enormous data sets of modern science and commerce. How did we get here? And where are we going? This book takes us on an exhilarating journey through the revolution in data analysis following the introduction of electronic computation in the 1950s. Beginning with classical inferential theories - Bayesian, frequentist, Fisherian - individual chapters take up a series of influential topics: survival analysis, logistic regression, empirical Bayes, the jackknife and bootstrap, random forests, neural networks, Markov chain Monte Carlo, inference after model selection, and dozens more. The distinctly modern approach integrates methodology and algorithms with statistical inference. The book ends with speculation on the future direction of statistics and data science.
Автор: ?milauer Название: Multivariate Analysis of Ecological Data using CANOCO 5 ISBN: 110769440X ISBN-13(EAN): 9781107694408 Издательство: Cambridge Academ Рейтинг: Цена: 9821.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: An accessible introduction to the theory and practice of multivariate analysis, this second edition will be a valuable resource to graduate students, researchers, lecturers and practitioners in the fields of plant and animal ecology, marine and freshwater biology, nature protection, forestry, and agronomy.
Автор: Kedem Benjamin Et Al Название: Statistical Data Fusion ISBN: 9813200189 ISBN-13(EAN): 9789813200180 Издательство: World Scientific Publishing Рейтинг: Цена: 12830.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: 'The book provides a comprehensive review of the DRM approach to data fusion. It is well written and easy to follow, although the technical details are not trivial. The authors did an excellent job in making a concise introduction of the statistical techniques in data fusion. The book contains several real data ... Overall, I found that the book covers an important topic and the DRM is a promising tool in this area. Researchers on data fusion will surely find this book very helpful and I will use this book in studying with my PhD students.'Journal of the American Statistical AssociationThis book comes up with estimates or decisions based on multiple data sources as opposed to more narrowly defined estimates or decisions based on single data sources. And as the world is awash with data obtained from numerous and varied processes, there is a need for appropriate statistical methods which in general produce improved inference by multiple data sources.The book contains numerous examples useful to practitioners from genomics. Topics range from sensors (radars), to small area estimation of body mass, to the estimation of small tail probabilities, to predictive distributions in time series analysis.
Featuring in-depth coverage of categorical and nonparametric statistics, this book provides a conceptual framework for choosing the most appropriate type of test in various research scenarios. Class tested at the University of Nevada, the book's clear explanations of the underlying assumptions, computer simulations, and Exploring the Concept boxes help reduce reader anxiety. Problems inspired by actual studies provide meaningful illustrations of the techniques. The underlying assumptions of each test and the factors that impact validity and statistical power are reviewed so readers can explain their assumptions and how tests work in future publications. Numerous examples from psychology, education, and other social sciences demonstrate varied applications of the material. Basic statistics and probability are reviewed for those who need a refresher. Mathematical derivations are placed in optional appendices for those interested in this detailed coverage.
Highlights include the following:
Unique coverage of categorical and nonparametric statistics better prepares readers to select the best technique for their particular research project; however, some chapters can be omitted entirely if preferred.
Step-by-step examples of each test help readers see how the material is applied in a variety of disciplines.
Although the book can be used with any program, examples of how to use the tests in SPSS and Excel foster conceptual understanding.
Exploring the Concept boxes integrated throughout prompt students to review key material and draw links between the concepts to deepen understanding.
Problems in each chapter help readers test their understanding of the material.
Emphasis on selecting tests that maximize power helps readers avoid "marginally" significant results.
Website (www.routledge.com/9781138787827) features datasets for the book's examples and problems, and for the instructor, PowerPoint slides, sample syllabi, answers to the even-numbered problems, and Excel data sets for lecture purposes.
Intended for individual or combined graduate or advanced undergraduate courses in categorical and nonparametric data analysis, cross-classified data analysis, advanced statistics and/or quantitative techniques taught in psychology, education, human development, sociology, political science, and other social and life sciences, the book also appeals to researchers in these disciplines. The nonparametric chapters can be deleted if preferred. Prerequisites include knowledge of t tests and ANOVA.
Автор: Koch Название: Analysis of Multivariate and High-Dimensional Data ISBN: 0521887933 ISBN-13(EAN): 9780521887939 Издательство: Cambridge Academ Рейтинг: Цена: 10613.00 р. Наличие на складе: Поставка под заказ.
Описание: `Big data` poses challenges that require both classical multivariate methods and modern machine-learning techniques. This coherent treatment integrates theory with data analysis, visualisation and interpretation of the analysis. Problems, data sets and MATLAB (R) code complete the package. It is suitable for master`s/graduate students in statistics and working scientists in data-rich disciplines.
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru