Introduction to statistics and data analysis, Peck, Roxy (california Polytechnic State University, San Luis Obispo) Olsen, Chris (grinnell College) Short, Tom (west Chester University Of Pennsylva
A brand new, fully updated edition of a popular classic on matrix differential calculus with applications in statistics and econometrics
This exhaustive, self-contained book on matrix theory and matrix differential calculus provides a treatment of matrix calculus based on differentials and shows how easy it is to use this theory once you have mastered the technique. Jan Magnus, who, along with the late Heinz Neudecker, pioneered the theory, develops it further in this new edition and provides many examples along the way to support it.
Matrix calculus has become an essential tool for quantitative methods in a large number of applications, ranging from social and behavioral sciences to econometrics. It is still relevant and used today in a wide range of subjects such as the biosciences and psychology. Matrix Differential Calculus with Applications in Statistics and Econometrics, Third Edition contains all of the essentials of multivariable calculus with an emphasis on the use of differentials. It starts by presenting a concise, yet thorough overview of matrix algebra, then goes on to develop the theory of differentials. The rest of the text combines the theory and application of matrix differential calculus, providing the practitioner and researcher with both a quick review and a detailed reference.
Fulfills the need for an updated and unified treatment of matrix differential calculus
Contains many new examples and exercises based on questions asked of the author over the years
Covers new developments in field and features new applications
Written by a leading expert and pioneer of the theory
Part of the Wiley Series in Probability and Statistics
Matrix Differential Calculus With Applications in Statistics and Econometrics Third Edition is an ideal text for graduate students and academics studying the subject, as well as for postgraduates and specialists working in biosciences and psychology.
Автор: Gelman Название: Bayesian Data Analysis, Third Edition ISBN: 1439840954 ISBN-13(EAN): 9781439840955 Издательство: Taylor&Francis Рейтинг: Цена: 11088.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Winner of the 2016 De Groot Prize from the International Society for Bayesian Analysis Now in its third edition, this classic book is widely considered the leading text on Bayesian methods, lauded for its accessible, practical approach to analyzing data and solving research problems. Bayesian Data Analysis, Third Edition continues to take an applied approach to analysis using up-to-date Bayesian methods. The authors—all leaders in the statistics community—introduce basic concepts from a data-analytic perspective before presenting advanced methods. Throughout the text, numerous worked examples drawn from real applications and research emphasize the use of Bayesian inference in practice. New to the Third Edition Four new chapters on nonparametric modeling Coverage of weakly informative priors and boundary-avoiding priors Updated discussion of cross-validation and predictive information criteria Improved convergence monitoring and effective sample size calculations for iterative simulation Presentations of Hamiltonian Monte Carlo, variational Bayes, and expectation propagation New and revised software code The book can be used in three different ways. For undergraduate students, it introduces Bayesian inference starting from first principles. For graduate students, the text presents effective current approaches to Bayesian modeling and computation in statistics and related fields. For researchers, it provides an assortment of Bayesian methods in applied statistics. Additional materials, including data sets used in the examples, solutions to selected exercises, and software instructions, are available on the book’s web page.
Автор: MacInnes John Название: An Introduction to Secondary Data Analysis with IBM SPSS Statis ISBN: 1446285774 ISBN-13(EAN): 9781446285770 Издательство: Sage Publications Рейтинг: Цена: 6968.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: John MacInnes takes the fear out of statistics for students, and helps to raise the standards of their quantitative methods skills, by clearly and accessibly introducing all that`s needed to know about using secondary data and working with IBM SPSS Statistics.
A Hands-On Approach to Teaching Introductory Statistics
Expanded with over 100 more pages, Introduction to Statistical Data Analysis for the Life Sciences, Second Edition presents the right balance of data examples, statistical theory, and computing to teach introductory statistics to students in the life sciences. This popular textbook covers the mathematics underlying classical statistical analysis, the modeling aspects of statistical analysis and the biological interpretation of results, and the application of statistical software in analyzing real-world problems and datasets.
New to the Second Edition
A new chapter on non-linear regression models
A new chapter that contains examples of complete data analyses, illustrating how a full-fledged statistical analysis is undertaken
Additional exercises in most chapters
A summary of statistical formulas related to the specific designs used to teach the statistical concepts
This text provides a computational toolbox that enables students to analyze real datasets and gain the confidence and skills to undertake more sophisticated analyses. Although accessible with any statistical software, the text encourages a reliance on R. For those new to R, an introduction to the software is available in an appendix. The book also includes end-of-chapter exercises as well as an entire chapter of case exercises that help students apply their knowledge to larger datasets and learn more about approaches specific to the life sciences.
Автор: Kokoszka Название: Introduction To Functional Data Ana ISBN: 1498746349 ISBN-13(EAN): 9781498746342 Издательство: Taylor&Francis Рейтинг: Цена: 13779.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The book provides an introduction to functional data analysis (FDA), useful to students and researchers. FDA is now generally viewed as a fundamental subfield of statistics. FDA methods have been applied to science, business and engineering.
Автор: M. Antonia Amaral Turkman, Carlos Daniel Paulino, Peter Muller Название: Computational Bayesian Statistics: An Introduction ISBN: 1108481035 ISBN-13(EAN): 9781108481038 Издательство: Cambridge Academ Рейтинг: Цена: 17424.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book explains the fundamental ideas of Bayesian analysis, with a focus on computational methods such as MCMC and available software such as R/R-INLA, OpenBUGS, JAGS, Stan, and BayesX. It is suitable as a textbook for a first graduate-level course and as a user`s guide for researchers and graduate students from beyond statistics.
Автор: Sternstein Martin Название: Barron`s AP Statistics, 8th Edition ISBN: 1438004982 ISBN-13(EAN): 9781438004983 Издательство: Ingram Цена: 2619.00 р. Наличие на складе: Нет в наличии.
Описание: This manual s in-depth preparation for the AP Statistics exam features the 35 absolutely best AP Statistics exam hints found anywhere, and includes:
A diagnostic test and five full-length and up-to-date practice exams
All test questions answered and explained
Additional multiple-choice and free-response questions with answers
A 15-chapter subject review covering all test topics
A guide to basic uses of TI-83/TI-84 calculators The manual can be purchased alone or with an enclosed CD-ROM that presents two additional practice tests with automatic scoring of the multiple-choice questions, as well as a second CD-ROM introducing the TI-Nspire. BONUS ONLINE PRACTICE TEST Students who purchase this book or package will also get FREE access to one additional full-length online AP Statistics test with all questions answered and explained."
Автор: Joseph K. Blitzstein, Jessica Hwang Название: Introduction to Probability, Second Edition ISBN: 1138369918 ISBN-13(EAN): 9781138369917 Издательство: Taylor&Francis Рейтинг: Цена: 11176.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Assumes one-semester of calculus. "Stories" make distributions (Normal, Binomial, Poisson that are widely-used in statistics) easier to remember, understand. Many books write down formulas without explaining clearly why these particular distributions are important or how they are all connected.
Автор: Joshi Название: Introduction to Mathematical Portfolio Theory ISBN: 1107042313 ISBN-13(EAN): 9781107042315 Издательство: Cambridge Academ Рейтинг: Цена: 9029.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: A concise yet comprehensive guide to the mathematics of portfolio theory from a modelling perspective, with discussion of the assumptions, limitations and implementations of the models as well as the theory underlying them. Aimed at advanced undergraduates, this book can be used for self-study or as a course text.
Автор: Bradley Efron and Trevor Hastie Название: Computer Age Statistical Inference ISBN: 1107149894 ISBN-13(EAN): 9781107149892 Издательство: Cambridge Academ Рейтинг: Цена: 9029.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The twenty-first century has seen a breathtaking expansion of statistical methodology, both in scope and in influence. 'Big data', 'data science', and 'machine learning' have become familiar terms in the news, as statistical methods are brought to bear upon the enormous data sets of modern science and commerce. How did we get here? And where are we going? This book takes us on an exhilarating journey through the revolution in data analysis following the introduction of electronic computation in the 1950s. Beginning with classical inferential theories - Bayesian, frequentist, Fisherian - individual chapters take up a series of influential topics: survival analysis, logistic regression, empirical Bayes, the jackknife and bootstrap, random forests, neural networks, Markov chain Monte Carlo, inference after model selection, and dozens more. The distinctly modern approach integrates methodology and algorithms with statistical inference. The book ends with speculation on the future direction of statistics and data science.
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru