Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Fundamentals of Machine Learning, Trappenberg Thomas


Варианты приобретения
Цена: 6572.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-08-04
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Trappenberg Thomas
Название:  Fundamentals of Machine Learning
ISBN: 9780198828044
Издательство: Oxford Academ
Классификация:




ISBN-10: 0198828047
Обложка/Формат: Paperback
Страницы: 272
Вес: 0.64 кг.
Дата издания: 12.12.2019
Язык: English
Размер: 272 x 557 x 22
Читательская аудитория: Professional & vocational
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Англии
Описание: Interest in machine learning is exploding across the world, both in research and for industrial applications. Fundamentals of Machine Learning provides a brief and accessible introduction to this rapidly growing field, one that will appeal to both students and researchers.


Fundamentals of Molecular Evolution.2ed

Автор: Graur
Название: Fundamentals of Molecular Evolution.2ed
ISBN: 0878932666 ISBN-13(EAN): 9780878932665
Издательство: Oxford Academ
Рейтинг:
Цена: 22650.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This textbook has been updated to incorporate the many advances in genomics, protein engineering, computational biology and bioinformatics. In the 2nd edition, the authors continue to explain evolutionary change at the molecular level in a way that can be understood without much prerequisite knowledge of molecular biology, evolution or mathematics.

Machine Learning

Автор: Kevin Murphy
Название: Machine Learning
ISBN: 0262018020 ISBN-13(EAN): 9780262018029
Издательство: MIT Press
Рейтинг:
Цена: 18622.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

A comprehensive introduction to machine learning that uses probabilistic models and inference as a unifying approach.

Today's Web-enabled deluge of electronic data calls for automated methods of data analysis. Machine learning provides these, developing methods that can automatically detect patterns in data and then use the uncovered patterns to predict future data. This textbook offers a comprehensive and self-contained introduction to the field of machine learning, based on a unified, probabilistic approach.

The coverage combines breadth and depth, offering necessary background material on such topics as probability, optimization, and linear algebra as well as discussion of recent developments in the field, including conditional random fields, L1 regularization, and deep learning. The book is written in an informal, accessible style, complete with pseudo-code for the most important algorithms. All topics are copiously illustrated with color images and worked examples drawn from such application domains as biology, text processing, computer vision, and robotics. Rather than providing a cookbook of different heuristic methods, the book stresses a principled model-based approach, often using the language of graphical models to specify models in a concise and intuitive way. Almost all the models described have been implemented in a MATLAB software package -- PMTK (probabilistic modeling toolkit) -- that is freely available online. The book is suitable for upper-level undergraduates with an introductory-level college math background and beginning graduate students.

Machine Learning Fundamentals

Автор: Saleh Hyatt
Название: Machine Learning Fundamentals
ISBN: 1789803551 ISBN-13(EAN): 9781789803556
Издательство: Неизвестно
Рейтинг:
Цена: 7171.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: As machine learning algorithms become popular, new tools that optimize these algorithms are also developed. Machine Learning Fundamentals explains the scikit-learn API, which is a package created to facilitate the process of building machine learning applications. By explaining the differences between supervised and unsupervised models and by ...

Fundamentals of Data Analytics: With a View to Machine Learning

Автор: Mathar Rudolf, Alirezaei Gholamreza, Balda Emilio
Название: Fundamentals of Data Analytics: With a View to Machine Learning
ISBN: 303056830X ISBN-13(EAN): 9783030568306
Издательство: Springer
Рейтинг:
Цена: 9083.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book introduces the basic methodologies for successful data analytics. The methodological overlap between data science and machine learning is emphasized by demonstrating how data science is used for classification as well as supervised and unsupervised learning.

Fundamentals of Deep Learning: Designing Next-Generation Machine Intelligence Algorithms, 2 ed.

Автор: Buduma Nithin, Buduma Nikhil
Название: Fundamentals of Deep Learning: Designing Next-Generation Machine Intelligence Algorithms, 2 ed.
ISBN: 149208218X ISBN-13(EAN): 9781492082187
Издательство: Wiley
Рейтинг:
Цена: 10136.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This updated second edition describes the intuition behind deep learning innovations without jargon or complexity. By the end of this book, Python-proficient programmers, software engineering professionals, and computer science majors will be able to re-implement these breakthroughs on their own.

Linguistic Fundamentals for Natural Language Processing II: 100 Essentials from Semantics and Pragmatics

Автор: Emily M. Bender, Alex Lascarides
Название: Linguistic Fundamentals for Natural Language Processing II: 100 Essentials from Semantics and Pragmatics
ISBN: 1681730731 ISBN-13(EAN): 9781681730738
Издательство: Mare Nostrum (Eurospan)
Рейтинг:
Цена: 13999.00 р.
Наличие на складе: Нет в наличии.

Описание: Meaning is a fundamental concept in Natural Language Processing (NLP), in the tasks of both Natural Language Understanding (NLU) and Natural Language Generation (NLG). This is because the aims of these fields are to build systems that understand what people mean when they speak or write, and that can produce linguistic strings that successfully express to people the intended content. In order for NLP to scale beyond partial, task-specific solutions, researchers in these fields must be informed by what is known about how humans use language to express and understand communicative intents. The purpose of this book is to present a selection of useful information about semantics and pragmatics, as understood in linguistics, in a way that's accessible to and useful for NLP practitioners with minimal (or even no) prior training in linguistics.

Artificial Intelligence and Machine Learning Fundamentals

Автор: Nagy Zsolt
Название: Artificial Intelligence and Machine Learning Fundamentals
ISBN: 1789801656 ISBN-13(EAN): 9781789801651
Издательство: Неизвестно
Рейтинг:
Цена: 6068.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Artificial Intelligence and Machine Learning Fundamentals teaches you machine learning and neural networks from the ground up using real-world examples. After you complete this book, you will be excited to revamp your current projects or build new intelligent networks.

Machine Learning for Subsurface Characterization

Автор: Misra, Siddharth
Название: Machine Learning for Subsurface Characterization
ISBN: 0128177365 ISBN-13(EAN): 9780128177365
Издательство: Elsevier Science
Рейтинг:
Цена: 18528.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

To continue to meet demand while keeping costs down, petroleum and reservoir engineers know it is critical to utilize their asset's data through more complex modeling methods, and machine learning and data analytics is the known alternative approach to accurately represent the complexity of fluid-filled rocks. With a lack of training resources available, Machine Learning for Subsurface Characterization focuses on the development and application of neural networks, deep learning, unsupervised learning, reinforcement learning, and clustering methods for subsurface characterization under constraints. Such constraints are encountered during subsurface engineering operations due to financial, operational, regulatory, risk, technological, and environmental challenges.

This reference teaches how to do more with less. Used to develop tools and techniques of data-driven predictive modelling and machine learning for subsurface engineering and science, engineers will be introduced to methods of generating subsurface signals and analyzing the complex relationships within various subsurface signals using machine learning. Algorithmic procedures in MATLAB, R, PYTHON, and TENSORFLOW are displayed in text and through online instructional video to assist training and learning. Field cases are also presented to understand real-world applications, with a particular focus on examples involving shale reservoirs.

Explaining the concept of machine learning, advantages to the industry, and applications applied to complex subsurface rocks, Machine Learning for Subsurface Characterization delivers a missing piece to the reservoir engineer's toolbox needed to support today's complex operations.

  • Focus on applying predictive modelling and machine learning from real case studies and Q&A sessions at the end of each chapter
  • Learn how to develop codes such as MATLAB, PYTHON, R, and TENSORFLOW with step-by-step guides included
  • Visually learn code development with video demonstrations included
Fundamentals of the Three-Dimensional Theory of Stability of Deformable Bodies

Автор: M. Kashtalian; A.N. Guz
Название: Fundamentals of the Three-Dimensional Theory of Stability of Deformable Bodies
ISBN: 3662219239 ISBN-13(EAN): 9783662219232
Издательство: Springer
Рейтинг:
Цена: 16979.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Fundamentals of Neurodegeneration and Protein Misfolding Disorders

Автор: Martin Beckerman
Название: Fundamentals of Neurodegeneration and Protein Misfolding Disorders
ISBN: 3319342843 ISBN-13(EAN): 9783319342849
Издательство: Springer
Рейтинг:
Цена: 15672.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Starting with protein folding and protein quality control basics, the reader will learn how misfolded proteins can cause diseases ranging from prion diseases to Alzheimer`s disease and Parkinson`s disease to Huntington`s disease, amyotrophic lateral sclerosis and frontotemporal lobar degeneration.

Data Mining. Practical Machine Learning Tools and Techniques, 4 ed.

Автор: Witten, Ian H.
Название: Data Mining. Practical Machine Learning Tools and Techniques, 4 ed.
ISBN: 0128042915 ISBN-13(EAN): 9780128042915
Издательство: Elsevier Science
Рейтинг:
Цена: 9262.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

Data Mining: Practical Machine Learning Tools and Techniques, Fourth Edition, offers a thorough grounding in machine learning concepts, along with practical advice on applying these tools and techniques in real-world data mining situations. This highly anticipated fourth edition of the most acclaimed work on data mining and machine learning teaches readers everything they need to know to get going, from preparing inputs, interpreting outputs, evaluating results, to the algorithmic methods at the heart of successful data mining approaches.

Extensive updates reflect the technical changes and modernizations that have taken place in the field since the last edition, including substantial new chapters on probabilistic methods and on deep learning. Accompanying the book is a new version of the popular WEKA machine learning software from the University of Waikato. Authors Witten, Frank, Hall, and Pal include today's techniques coupled with the methods at the leading edge of contemporary research.

Please visit the book companion website at https: //www.cs.waikato.ac.nz/ ml/weka/book.html.

It contains

  • Powerpoint slides for Chapters 1-12. This is a very comprehensive teaching resource, with many PPT slides covering each chapter of the book
  • Online Appendix on the Weka workbench; again a very comprehensive learning aid for the open source software that goes with the book
  • Table of contents, highlighting the many new sections in the 4th edition, along with reviews of the 1st edition, errata, etc.

  • Provides a thorough grounding in machine learning concepts, as well as practical advice on applying the tools and techniques to data mining projects
  • Presents concrete tips and techniques for performance improvement that work by transforming the input or output in machine learning methods
  • Includes a downloadable WEKA software toolkit, a comprehensive collection of machine learning algorithms for data mining tasks-in an easy-to-use interactive interface
  • Includes open-access online courses that introduce practical applications of the material in the book
Linguistic Fundamentals for Natural Language Processing II: 100 Essentials from Semantics and Pragmatics

Автор: Bender Emily M., Lascarides Alex
Название: Linguistic Fundamentals for Natural Language Processing II: 100 Essentials from Semantics and Pragmatics
ISBN: 1681736217 ISBN-13(EAN): 9781681736211
Издательство: Mare Nostrum (Eurospan)
Рейтинг:
Цена: 15662.00 р.
Наличие на складе: Нет в наличии.

Описание: Meaning is a fundamental concept in Natural Language Processing (NLP), in the tasks of both Natural Language Understanding (NLU) and Natural Language Generation (NLG).

This is because the aims of these fields are to build systems that understand what people mean when they speak or write, and that can produce linguistic strings that successfully express to people the intended content. In order for NLP to scale beyond partial, task-specific solutions, researchers in these fields must be informed by what is known about how humans use language to express and understand communicative intents. The purpose of this book is to present a selection of useful information about semantics and pragmatics, as understood in linguistics, in a way that's accessible to and useful for NLP practitioners with minimal (or even no) prior training in linguistics.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия