Introduction to multi-armed bandits, Slivkins, Aleksandrs
Автор: Sutton Richard S., Barto Andrew G. Название: Reinforcement Learning: An Introduction, 2 ed. ISBN: 0262039249 ISBN-13(EAN): 9780262039246 Издательство: MIT Press Рейтинг: Цена: 18850.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:
The significantly expanded and updated new edition of a widely used text on reinforcement learning, one of the most active research areas in artificial intelligence.
Reinforcement learning, one of the most active research areas in artificial intelligence, is a computational approach to learning whereby an agent tries to maximize the total amount of reward it receives while interacting with a complex, uncertain environment. In Reinforcement Learning, Richard Sutton and Andrew Barto provide a clear and simple account of the field's key ideas and algorithms. This second edition has been significantly expanded and updated, presenting new topics and updating coverage of other topics.
Like the first edition, this second edition focuses on core, online learning algorithms, with the more mathematical material set off in shaded boxes. Part I covers as much of reinforcement learning as possible without going beyond the tabular case for which exact solutions can be found. Many algorithms presented in this part are new for the second edition, including UCB, Expected Sarsa, and Double Learning. Part II extends these ideas to function approximation, with new sections on such topics as artificial neural networks and the Fourier basis, and offers expanded treatment of off-policy learning and policy-gradient methods. Part III has new chapters on reinforcement learning's relationships to psychology and neuroscience, as well as an updated case-studies chapter including AlphaGo and AlphaGo Zero, Atari game playing, and IBM Watson's wagering strategy. The final chapter discusses the future societal impacts of reinforcement learning.
Автор: Boyd Stephen Название: Introduction to Applied Linear Algebra ISBN: 1316518965 ISBN-13(EAN): 9781316518960 Издательство: Cambridge Academ Рейтинг: Цена: 6811.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: A groundbreaking introductory textbook covering the linear algebra methods needed for data science and engineering applications. It combines straightforward explanations with numerous practical examples and exercises from data science, machine learning and artificial intelligence, signal and image processing, navigation, control, and finance.
Название: Introduction to Deep Learning ISBN: 3319730037 ISBN-13(EAN): 9783319730035 Издательство: Springer Рейтинг: Цена: 6986.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This textbook presents a concise, accessible and engaging first introduction to deep learning, offering a wide range of connectionist models which represent the current state-of-the-art. The text explores the most popular algorithms and architectures in a simple and intuitive style, explaining the mathematical derivations in a step-by-step manner. The content coverage includes convolutional networks, LSTMs, Word2vec, RBMs, DBNs, neural Turing machines, memory networks and autoencoders. Numerous examples in working Python code are provided throughout the book, and the code is also supplied separately at an accompanying website.Topics and features: introduces the fundamentals of machine learning, and the mathematical and computational prerequisites for deep learning; discusses feed-forward neural networks, and explores the modifications to these which can be applied to any neural network; examines convolutional neural networks, and the recurrent connections to a feed-forward neural network; describes the notion of distributed representations, the concept of the autoencoder, and the ideas behind language processing with deep learning; presents a brief history of artificial intelligence and neural networks, and reviews interesting open research problems in deep learning and connectionism.This clearly written and lively primer on deep learning is essential reading for graduate and advanced undergraduate students of computer science, cognitive science and mathematics, as well as fields such as linguistics, logic, philosophy, and psychology.
Автор: Coley, David Название: Introduction to genetic algorithms for scientists and engineers ISBN: 9810236026 ISBN-13(EAN): 9789810236021 Издательство: World Scientific Publishing Рейтинг: Цена: 6494.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The approach taken in this text is largely practical, with algorithms being presented in full and working code (in BASIC, FORTRAN, PASCAL and C) on the accompanying disk. Exercises are included at the end of several chapters, many of which are computer based.
Автор: Mitra, Sushmita , Datta, Sujay , Perkins, Theodo Название: Introduction to Machine Learning and Bioinformatics ISBN: 0367387239 ISBN-13(EAN): 9780367387235 Издательство: Taylor&Francis Рейтинг: Цена: 9798.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:
Lucidly Integrates Current Activities
Focusing on both fundamentals and recent advances, Introduction to Machine Learning and Bioinformatics presents an informative and accessible account of the ways in which these two increasingly intertwined areas relate to each other.
Examines Connections between Machine Learning & Bioinformatics
The book begins with a brief historical overview of the technological developments in biology. It then describes the main problems in bioinformatics and the fundamental concepts and algorithms of machine learning. After forming this foundation, the authors explore how machine learning techniques apply to bioinformatics problems, such as electron density map interpretation, biclustering, DNA sequence analysis, and tumor classification. They also include exercises at the end of some chapters and offer supplementary materials on their website.
Explores How Machine Learning Techniques Can Help Solve Bioinformatics Problems
Shedding light on aspects of both machine learning and bioinformatics, this text shows how the innovative tools and techniques of machine learning help extract knowledge from the deluge of information produced by today's biological experiments.
Описание: Advanced statistical modeling and knowledge representation techniques for a newly emerging area of machine learning and probabilistic reasoning; includes introductory material, tutorials for different proposed approaches, and applications.
Автор: Chirag Shah Название: A Hands-On Introduction to Data Science ISBN: 1108472443 ISBN-13(EAN): 9781108472449 Издательство: Cambridge Academ Рейтинг: Цена: 7286.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: A practical introduction to data science with a low barrier entry, this textbook is well-suited to students from a range of disciplines. Assuming no prior knowledge of the subject, the hands-on exercises and real-life application of popular data science tools are accessible even to students without a strong technical background.
Автор: Bishop Adrian N., del Moral Pierre, Niclas Angele Название: An Introduction to Wishart Matrix Moments ISBN: 1680835068 ISBN-13(EAN): 9781680835069 Издательство: Неизвестно Рейтинг: Цена: 12415.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Reviews and extends some important results in random matrix theory in the specific context of real random Wishart matrices. To overcome the complexity of the subject matter, the authors use a lecture note style to make the material accessible to a wide audience. This results in a comprehensive and self-contained introduction.
Автор: Charniak Eugene Название: Introduction to Deep Learning ISBN: 0262039516 ISBN-13(EAN): 9780262039512 Издательство: MIT Press Рейтинг: Цена: 5925.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:
A project-based guide to the basics of deep learning.
This concise, project-driven guide to deep learning takes readers through a series of program-writing tasks that introduce them to the use of deep learning in such areas of artificial intelligence as computer vision, natural-language processing, and reinforcement learning. The author, a longtime artificial intelligence researcher specializing in natural-language processing, covers feed-forward neural nets, convolutional neural nets, word embeddings, recurrent neural nets, sequence-to-sequence learning, deep reinforcement learning, unsupervised models, and other fundamental concepts and techniques. Students and practitioners learn the basics of deep learning by working through programs in Tensorflow, an open-source machine learning framework. "I find I learn computer science material best by sitting down and writing programs," the author writes, and the book reflects this approach.
Each chapter includes a programming project, exercises, and references for further reading. An early chapter is devoted to Tensorflow and its interface with Python, the widely used programming language. Familiarity with linear algebra, multivariate calculus, and probability and statistics is required, as is a rudimentary knowledge of programming in Python. The book can be used in both undergraduate and graduate courses; practitioners will find it an essential reference.
Автор: Kingma, Diederik P. Welling, Max Название: Introduction to variational autoencoders ISBN: 1680836226 ISBN-13(EAN): 9781680836226 Издательство: Mare Nostrum (Eurospan) Рейтинг: Цена: 10118.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Presents an introduction to the framework of variational autoencoders (VAEs) that provides a principled method for jointly learning deep latent-variable models and corresponding inference models using stochastic gradient descent.
Автор: Wilmott Paul Название: Machine Learning: An Applied Mathematics Introduction ISBN: 1916081606 ISBN-13(EAN): 9781916081604 Издательство: Неизвестно Рейтинг: Цена: 3677.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:
Machine Learning: An Applied Mathematics Introduction covers the essential mathematics behind all of the following topics
K Nearest Neighbours
K Means Clustering
Na ve Bayes Classifier
Regression Methods
Support Vector Machines
Self-Organizing Maps
Decision Trees
Neural Networks
Reinforcement Learning
The book includes many real-world examples from a variety of fields including
finance (volatility modelling)
economics (interest rates, inflation and GDP)
politics (classifying politicians according to their voting records, and using speeches to determine whether a politician is left or right wing)
biology (recognising flower varieties, and using heights and weights of adults to determine gender)
sociology (classifying locations according to crime statistics)
gambling (fruit machines and Blackjack)
business (classifying the members of his own website to see who will subscribe to his magazine )
Paul Wilmott brings three decades of experience in mathematics education, and his inimitable style, to the hottest of subjects. This book is an accessible introduction for anyone who wants to understand the foundations but also wants to "get to the meat without having to eat too many vegetables."
Описание: Multi-armed bandit problems pertain to optimal sequential decision making and learning in unknown environments. Since the first bandit problem posed by Thompson in 1933 for the application of clinical trials, bandit problems have enjoyed lasting attention from multiple research communities and have found a wide range of applications across diverse domains. This book covers classic results and recent development on both Bayesian and frequentist bandit problems. We start in Chapter 1 with a brief overview on the history of bandit problems, contrasting the two schools—Bayesian and frequentis —of approaches and highlighting foundational results and key applications. Chapters 2 and 4 cover, respectively, the canonical Bayesian and frequentist bandit models. In Chapters 3 and 5, we discuss major variants of the canonical bandit models that lead to new directions, bring in new techniques, and broaden the applications of this classical problem. In Chapter 6, we present several representative application examples in communication networks and social-economic systems, aiming to illuminate the connections between the Bayesian and the frequentist formulations of bandit problems and how structural results pertaining to one may be leveraged to obtain solutions under the other.
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru