Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Introduction to Machine Learning and Bioinformatics, Mitra, Sushmita , Datta, Sujay , Perkins, Theodo


Варианты приобретения
Цена: 9798.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Mitra, Sushmita , Datta, Sujay , Perkins, Theodo
Название:  Introduction to Machine Learning and Bioinformatics
ISBN: 9780367387235
Издательство: Taylor&Francis
Классификация:


ISBN-10: 0367387239
Обложка/Формат: Paperback
Страницы: 384
Вес: 1.56 кг.
Дата издания: 27.09.2019
Язык: English
Размер: 231 x 155 x 20
Читательская аудитория: Tertiary education (us: college)
Основная тема: Statistical Computing
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Европейский союз
Описание:

Lucidly Integrates Current Activities

Focusing on both fundamentals and recent advances, Introduction to Machine Learning and Bioinformatics presents an informative and accessible account of the ways in which these two increasingly intertwined areas relate to each other.

Examines Connections between Machine Learning & Bioinformatics

The book begins with a brief historical overview of the technological developments in biology. It then describes the main problems in bioinformatics and the fundamental concepts and algorithms of machine learning. After forming this foundation, the authors explore how machine learning techniques apply to bioinformatics problems, such as electron density map interpretation, biclustering, DNA sequence analysis, and tumor classification. They also include exercises at the end of some chapters and offer supplementary materials on their website.

Explores How Machine Learning Techniques Can Help Solve Bioinformatics Problems

Shedding light on aspects of both machine learning and bioinformatics, this text shows how the innovative tools and techniques of machine learning help extract knowledge from the deluge of information produced by todays biological experiments.




Data Mining. Practical Machine Learning Tools and Techniques, 4 ed.

Автор: Witten, Ian H.
Название: Data Mining. Practical Machine Learning Tools and Techniques, 4 ed.
ISBN: 0128042915 ISBN-13(EAN): 9780128042915
Издательство: Elsevier Science
Рейтинг:
Цена: 9262.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

Data Mining: Practical Machine Learning Tools and Techniques, Fourth Edition, offers a thorough grounding in machine learning concepts, along with practical advice on applying these tools and techniques in real-world data mining situations. This highly anticipated fourth edition of the most acclaimed work on data mining and machine learning teaches readers everything they need to know to get going, from preparing inputs, interpreting outputs, evaluating results, to the algorithmic methods at the heart of successful data mining approaches.

Extensive updates reflect the technical changes and modernizations that have taken place in the field since the last edition, including substantial new chapters on probabilistic methods and on deep learning. Accompanying the book is a new version of the popular WEKA machine learning software from the University of Waikato. Authors Witten, Frank, Hall, and Pal include today's techniques coupled with the methods at the leading edge of contemporary research.

Please visit the book companion website at https: //www.cs.waikato.ac.nz/ ml/weka/book.html.

It contains

  • Powerpoint slides for Chapters 1-12. This is a very comprehensive teaching resource, with many PPT slides covering each chapter of the book
  • Online Appendix on the Weka workbench; again a very comprehensive learning aid for the open source software that goes with the book
  • Table of contents, highlighting the many new sections in the 4th edition, along with reviews of the 1st edition, errata, etc.

  • Provides a thorough grounding in machine learning concepts, as well as practical advice on applying the tools and techniques to data mining projects
  • Presents concrete tips and techniques for performance improvement that work by transforming the input or output in machine learning methods
  • Includes a downloadable WEKA software toolkit, a comprehensive collection of machine learning algorithms for data mining tasks-in an easy-to-use interactive interface
  • Includes open-access online courses that introduce practical applications of the material in the book
Python machine learning -

Автор: Raschka, Sebastian Mirjalili, Vahid
Название: Python machine learning -
ISBN: 1787125939 ISBN-13(EAN): 9781787125933
Издательство: Неизвестно
Цена: 8091.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This second edition of Python Machine Learning by Sebastian Raschka is for developers and data scientists looking for a practical approach to machine learning and deep learning. In this updated edition, you`ll explore the machine learning process using Python and the latest open source technologies, including scikit-learn and TensorFlow 1.x.

Machine Learning: An Applied Mathematics Introduction

Автор: Wilmott Paul
Название: Machine Learning: An Applied Mathematics Introduction
ISBN: 1916081606 ISBN-13(EAN): 9781916081604
Издательство: Неизвестно
Рейтинг:
Цена: 3677.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

Machine Learning: An Applied Mathematics Introduction covers the essential mathematics behind all of the following topics

  • K Nearest Neighbours
  • K Means Clustering
  • Na ve Bayes Classifier
  • Regression Methods
  • Support Vector Machines
  • Self-Organizing Maps
  • Decision Trees
  • Neural Networks
  • Reinforcement Learning

The book includes many real-world examples from a variety of fields including

  • finance (volatility modelling)
  • economics (interest rates, inflation and GDP)
  • politics (classifying politicians according to their voting records, and using speeches to determine whether a politician is left or right wing)
  • biology (recognising flower varieties, and using heights and weights of adults to determine gender)
  • sociology (classifying locations according to crime statistics)
  • gambling (fruit machines and Blackjack)
  • business (classifying the members of his own website to see who will subscribe to his magazine )

Paul Wilmott brings three decades of experience in mathematics education, and his inimitable style, to the hottest of subjects. This book is an accessible introduction for anyone who wants to understand the foundations but also wants to "get to the meat without having to eat too many vegetables."

Introduction to Applied Linear Algebra

Автор: Boyd Stephen
Название: Introduction to Applied Linear Algebra
ISBN: 1316518965 ISBN-13(EAN): 9781316518960
Издательство: Cambridge Academ
Рейтинг:
Цена: 6811.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: A groundbreaking introductory textbook covering the linear algebra methods needed for data science and engineering applications. It combines straightforward explanations with numerous practical examples and exercises from data science, machine learning and artificial intelligence, signal and image processing, navigation, control, and finance.

Statistical Modelling and Machine Learning Principles for Bioinformatics Techniques, Tools, and Applications

Автор: Srinivasa K. G., Siddesh G. M., Manisekhar S. R.
Название: Statistical Modelling and Machine Learning Principles for Bioinformatics Techniques, Tools, and Applications
ISBN: 9811524440 ISBN-13(EAN): 9789811524448
Издательство: Springer
Рейтинг:
Цена: 25155.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book discusses topics related to bioinformatics, statistics, and machine learning, presenting the latest research in various areas of bioinformatics.

Introduction to Statistical Machine Learning

Автор: Masashi Sugiyama
Название: Introduction to Statistical Machine Learning
ISBN: 0128021217 ISBN-13(EAN): 9780128021217
Издательство: Elsevier Science
Рейтинг:
Цена: 17180.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

Machine learning allows computers to learn and discern patterns without actually being programmed. When Statistical techniques and machine learning are combined together they are a powerful tool for analysing various kinds of data in many computer science/engineering areas including, image processing, speech processing, natural language processing, robot control, as well as in fundamental sciences such as biology, medicine, astronomy, physics, and materials.

Introduction to Statistical Machine Learning provides a general introduction to machine learning that covers a wide range of topics concisely and will help you bridge the gap between theory and practice. Part I discusses the fundamental concepts of statistics and probability that are used in describing machine learning algorithms. Part II and Part III explain the two major approaches of machine learning techniques; generative methods and discriminative methods. While Part III provides an in-depth look at advanced topics that play essential roles in making machine learning algorithms more useful in practice. The accompanying MATLAB/Octave programs provide you with the necessary practical skills needed to accomplish a wide range of data analysis tasks.

  • Provides the necessary background material to understand machine learning such as statistics, probability, linear algebra, and calculus
  • Complete coverage of the generative approach to statistical pattern recognition and the discriminative approach to statistical machine learning
  • Includes MATLAB/Octave programs so that readers can test the algorithms numerically and acquire both mathematical and practical skills in a wide range of data analysis tasks
  • Discusses a wide range of applications in machine learning and statistics and provides examples drawn from image processing, speech processing, natural language processing, robot control, as well as biology, medicine, astronomy, physics, and materials
Computational Bayesian Statistics: An Introduction

Автор: M. Antonia Amaral Turkman, Carlos Daniel Paulino, Peter Muller
Название: Computational Bayesian Statistics: An Introduction
ISBN: 1108481035 ISBN-13(EAN): 9781108481038
Издательство: Cambridge Academ
Рейтинг:
Цена: 17424.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book explains the fundamental ideas of Bayesian analysis, with a focus on computational methods such as MCMC and available software such as R/R-INLA, OpenBUGS, JAGS, Stan, and BayesX. It is suitable as a textbook for a first graduate-level course and as a user`s guide for researchers and graduate students from beyond statistics.

Introduction to multi-armed bandits

Автор: Slivkins, Aleksandrs
Название: Introduction to multi-armed bandits
ISBN: 168083620X ISBN-13(EAN): 9781680836202
Издательство: Mare Nostrum (Eurospan)
Рейтинг:
Цена: 13306.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Provides a textbook like treatment of multi-armed bandits. The work on multi-armed bandits can be partitioned into a dozen or so directions. Each chapter tackles one line of work, providing a self-contained introduction and pointers for further reading.

Introduction to variational autoencoders

Автор: Kingma, Diederik P. Welling, Max
Название: Introduction to variational autoencoders
ISBN: 1680836226 ISBN-13(EAN): 9781680836226
Издательство: Mare Nostrum (Eurospan)
Рейтинг:
Цена: 10118.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Presents an introduction to the framework of variational autoencoders (VAEs) that provides a principled method for jointly learning deep latent-variable models and corresponding inference models using stochastic gradient descent.

An Introduction to Machine Learning

Автор: Gopinath Rebala; Ajay Ravi; Sanjay Churiwala
Название: An Introduction to Machine Learning
ISBN: 3030157288 ISBN-13(EAN): 9783030157289
Издательство: Springer
Рейтинг:
Цена: 15372.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Just like electricity, Machine Learning will revolutionize our life in many ways – some of which are not even conceivable today. This book provides a thorough conceptual understanding of Machine Learning techniques and algorithms. Many of the mathematical concepts are explained in an intuitive manner. The book starts with an overview of machine learning and the underlying Mathematical and Statistical concepts before moving onto machine learning topics. It gradually builds up the depth, covering many of the present day machine learning algorithms, ending in Deep Learning and Reinforcement Learning algorithms. The book also covers some of the popular Machine Learning applications. The material in this book is agnostic to any specific programming language or hardware so that readers can try these concepts on whichever platforms they are already familiar with. Offers a comprehensive introduction to Machine Learning, while not assuming any prior knowledge of the topic;Provides a complete overview of available techniques and algorithms in conceptual terms, covering various application domains of machine learning;Not tied to any specific software language or hardware implementation.

A Hands-On Introduction to Data Science

Автор: Chirag Shah
Название: A Hands-On Introduction to Data Science
ISBN: 1108472443 ISBN-13(EAN): 9781108472449
Издательство: Cambridge Academ
Рейтинг:
Цена: 7286.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: A practical introduction to data science with a low barrier entry, this textbook is well-suited to students from a range of disciplines. Assuming no prior knowledge of the subject, the hands-on exercises and real-life application of popular data science tools are accessible even to students without a strong technical background.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия