Data Mining: Practical Machine Learning Tools and Techniques, Fourth Edition, offers a thorough grounding in machine learning concepts, along with practical advice on applying these tools and techniques in real-world data mining situations. This highly anticipated fourth edition of the most acclaimed work on data mining and machine learning teaches readers everything they need to know to get going, from preparing inputs, interpreting outputs, evaluating results, to the algorithmic methods at the heart of successful data mining approaches.
Extensive updates reflect the technical changes and modernizations that have taken place in the field since the last edition, including substantial new chapters on probabilistic methods and on deep learning. Accompanying the book is a new version of the popular WEKA machine learning software from the University of Waikato. Authors Witten, Frank, Hall, and Pal include today's techniques coupled with the methods at the leading edge of contemporary research.
Please visit the book companion website at https: //www.cs.waikato.ac.nz/ ml/weka/book.html.
It contains
Powerpoint slides for Chapters 1-12. This is a very comprehensive teaching resource, with many PPT slides covering each chapter of the book
Online Appendix on the Weka workbench; again a very comprehensive learning aid for the open source software that goes with the book
Table of contents, highlighting the many new sections in the 4th edition, along with reviews of the 1st edition, errata, etc.
Provides a thorough grounding in machine learning concepts, as well as practical advice on applying the tools and techniques to data mining projects
Presents concrete tips and techniques for performance improvement that work by transforming the input or output in machine learning methods
Includes a downloadable WEKA software toolkit, a comprehensive collection of machine learning algorithms for data mining tasks-in an easy-to-use interactive interface
Includes open-access online courses that introduce practical applications of the material in the book
Автор: Raschka, Sebastian Mirjalili, Vahid Название: Python machine learning - ISBN: 1787125939 ISBN-13(EAN): 9781787125933 Издательство: Неизвестно Цена: 8091.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This second edition of Python Machine Learning by Sebastian Raschka is for developers and data scientists looking for a practical approach to machine learning and deep learning. In this updated edition, you`ll explore the machine learning process using Python and the latest open source technologies, including scikit-learn and TensorFlow 1.x.
Автор: Wilmott Paul Название: Machine Learning: An Applied Mathematics Introduction ISBN: 1916081606 ISBN-13(EAN): 9781916081604 Издательство: Неизвестно Рейтинг: Цена: 3677.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:
Machine Learning: An Applied Mathematics Introduction covers the essential mathematics behind all of the following topics
K Nearest Neighbours
K Means Clustering
Na ve Bayes Classifier
Regression Methods
Support Vector Machines
Self-Organizing Maps
Decision Trees
Neural Networks
Reinforcement Learning
The book includes many real-world examples from a variety of fields including
finance (volatility modelling)
economics (interest rates, inflation and GDP)
politics (classifying politicians according to their voting records, and using speeches to determine whether a politician is left or right wing)
biology (recognising flower varieties, and using heights and weights of adults to determine gender)
sociology (classifying locations according to crime statistics)
gambling (fruit machines and Blackjack)
business (classifying the members of his own website to see who will subscribe to his magazine )
Paul Wilmott brings three decades of experience in mathematics education, and his inimitable style, to the hottest of subjects. This book is an accessible introduction for anyone who wants to understand the foundations but also wants to "get to the meat without having to eat too many vegetables."
Автор: Boyd Stephen Название: Introduction to Applied Linear Algebra ISBN: 1316518965 ISBN-13(EAN): 9781316518960 Издательство: Cambridge Academ Рейтинг: Цена: 6811.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: A groundbreaking introductory textbook covering the linear algebra methods needed for data science and engineering applications. It combines straightforward explanations with numerous practical examples and exercises from data science, machine learning and artificial intelligence, signal and image processing, navigation, control, and finance.
Описание: This book discusses topics related to bioinformatics, statistics, and machine learning, presenting the latest research in various areas of bioinformatics.
Автор: Masashi Sugiyama Название: Introduction to Statistical Machine Learning ISBN: 0128021217 ISBN-13(EAN): 9780128021217 Издательство: Elsevier Science Рейтинг: Цена: 17180.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:
Machine learning allows computers to learn and discern patterns without actually being programmed. When Statistical techniques and machine learning are combined together they are a powerful tool for analysing various kinds of data in many computer science/engineering areas including, image processing, speech processing, natural language processing, robot control, as well as in fundamental sciences such as biology, medicine, astronomy, physics, and materials.
Introduction to Statistical Machine Learning provides ageneral introduction to machine learning that covers a wide range of topics concisely and will help you bridge the gap between theory and practice. Part I discusses the fundamental concepts of statistics and probability that are used in describing machine learning algorithms. Part II and Part III explain the two major approaches of machine learning techniques; generative methods and discriminative methods. While Part III provides an in-depth look at advanced topics that play essential roles in making machine learning algorithms more useful in practice. The accompanying MATLAB/Octave programs provide you with the necessary practical skills needed to accomplish a wide range of data analysis tasks.
Provides the necessary background material to understand machine learning such as statistics, probability, linear algebra, and calculus
Complete coverage of the generative approach to statistical pattern recognition and the discriminative approach to statistical machine learning
Includes MATLAB/Octave programs so that readers can test the algorithms numerically and acquire both mathematical and practical skills in a wide range of data analysis tasks
Discusses a wide range of applications in machine learning and statistics and provides examples drawn from image processing, speech processing, natural language processing, robot control, as well as biology, medicine, astronomy, physics, and materials
Автор: M. Antonia Amaral Turkman, Carlos Daniel Paulino, Peter Muller Название: Computational Bayesian Statistics: An Introduction ISBN: 1108481035 ISBN-13(EAN): 9781108481038 Издательство: Cambridge Academ Рейтинг: Цена: 17424.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book explains the fundamental ideas of Bayesian analysis, with a focus on computational methods such as MCMC and available software such as R/R-INLA, OpenBUGS, JAGS, Stan, and BayesX. It is suitable as a textbook for a first graduate-level course and as a user`s guide for researchers and graduate students from beyond statistics.
Автор: Slivkins, Aleksandrs Название: Introduction to multi-armed bandits ISBN: 168083620X ISBN-13(EAN): 9781680836202 Издательство: Mare Nostrum (Eurospan) Рейтинг: Цена: 13306.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Provides a textbook like treatment of multi-armed bandits. The work on multi-armed bandits can be partitioned into a dozen or so directions. Each chapter tackles one line of work, providing a self-contained introduction and pointers for further reading.
Автор: Kingma, Diederik P. Welling, Max Название: Introduction to variational autoencoders ISBN: 1680836226 ISBN-13(EAN): 9781680836226 Издательство: Mare Nostrum (Eurospan) Рейтинг: Цена: 10118.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Presents an introduction to the framework of variational autoencoders (VAEs) that provides a principled method for jointly learning deep latent-variable models and corresponding inference models using stochastic gradient descent.
Автор: Gopinath Rebala; Ajay Ravi; Sanjay Churiwala Название: An Introduction to Machine Learning ISBN: 3030157288 ISBN-13(EAN): 9783030157289 Издательство: Springer Рейтинг: Цена: 15372.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Just like electricity, Machine Learning will revolutionize our life in many ways – some of which are not even conceivable today. This book provides a thorough conceptual understanding of Machine Learning techniques and algorithms. Many of the mathematical concepts are explained in an intuitive manner. The book starts with an overview of machine learning and the underlying Mathematical and Statistical concepts before moving onto machine learning topics. It gradually builds up the depth, covering many of the present day machine learning algorithms, ending in Deep Learning and Reinforcement Learning algorithms. The book also covers some of the popular Machine Learning applications. The material in this book is agnostic to any specific programming language or hardware so that readers can try these concepts on whichever platforms they are already familiar with. Offers a comprehensive introduction to Machine Learning, while not assuming any prior knowledge of the topic;Provides a complete overview of available techniques and algorithms in conceptual terms, covering various application domains of machine learning;Not tied to any specific software language or hardware implementation.
Автор: Chirag Shah Название: A Hands-On Introduction to Data Science ISBN: 1108472443 ISBN-13(EAN): 9781108472449 Издательство: Cambridge Academ Рейтинг: Цена: 7286.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: A practical introduction to data science with a low barrier entry, this textbook is well-suited to students from a range of disciplines. Assuming no prior knowledge of the subject, the hands-on exercises and real-life application of popular data science tools are accessible even to students without a strong technical background.
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru