Genetic algorithms in search, optimization, and machine learning /, Goldberg, David E.
Автор: Tim Roughgarden Название: Beyond the Worst-Case Analysis of Algorithms ISBN: 1108494315 ISBN-13(EAN): 9781108494311 Издательство: Cambridge Academ Рейтинг: Цена: 9187.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Understanding when and why algorithms work is a fundamental challenge. For problems ranging from clustering to linear programming to neural networks there are significant gaps between empirical performance and prediction based on traditional worst-case analysis. The book introduces exciting new methods for assessing algorithm performance.
Описание: This book discusses state-of-the-art stochastic optimization algorithms for distributed machine learning and analyzes their convergence speed. The book first introduces stochastic gradient descent (SGD) and its distributed version, synchronous SGD, where the task of computing gradients is divided across several worker nodes. The author discusses several algorithms that improve the scalability and communication efficiency of synchronous SGD, such as asynchronous SGD, local-update SGD, quantized and sparsified SGD, and decentralized SGD. For each of these algorithms, the book analyzes its error versus iterations convergence, and the runtime spent per iteration. The author shows that each of these strategies to reduce communication or synchronization delays encounters a fundamental trade-off between error and runtime.
Автор: Kapoor Vivek, Dey Shubhamoy Название: Genetic Algorithms and Applications for Stock Trading Optimization ISBN: 1799870774 ISBN-13(EAN): 9781799870777 Издательство: Mare Nostrum (Eurospan) Рейтинг: Цена: 27166.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Genetic algorithms (GAs) are based on Darwin's theory of natural selection and survival of the fittest. They are designed to competently look for solutions to big and multifaceted problems. Genetic algorithms are wide groups of interrelated events with divided steps. Each step has dissimilarities, which leads to a broad range of connected actions. Genetic algorithms are used to improve trading systems, such as to optimize a trading rule or parameters of a predefined multiple indicator market trading system.
Genetic Algorithms and Applications for Stock Trading Optimization is a complete reference source to genetic algorithms that explains how they might be used to find trading strategies, as well as their use in search and optimization. It covers the functions of genetic algorithms internally, computer implementation of pseudo-code of genetic algorithms in C++, technical analysis for stock market forecasting, and research outcomes that apply in the stock trading system. This book is ideal for computer scientists, IT specialists, data scientists, managers, executives, professionals, academicians, researchers, graduate-level programs, research programs, and post-graduate students of engineering and science.
Описание: While the weight of a structure constitutes a significant part of the cost, a minimum weight design is not necessarily the minimum cost design. Little attention in structural optimization has been paid to the cost optimization problem, particularly of realistic three-dimensional structures.
Автор: Tor Lattimore, Csaba Szepesvari Название: Bandit Algorithms ISBN: 1108486827 ISBN-13(EAN): 9781108486828 Издательство: Cambridge Academ Рейтинг: Цена: 6970.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Decision-making in the face of uncertainty is a challenge in machine learning, and the multi-armed bandit model is a common framework to address it. This comprehensive introduction is an excellent reference for established researchers and a resource for graduate students interested in exploring stochastic, adversarial and Bayesian frameworks.
Автор: Sebastian Bubeck. Название: Convex Optimization: Algorithms and Complexity ISBN: 1601988605 ISBN-13(EAN): 9781601988607 Издательство: Mare Nostrum (Eurospan) Рейтинг: Цена: 12613.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Presents the main complexity theorems in convex optimization and their corresponding algorithms. The book begins with the fundamental theory of black-box optimization and proceeds to guide the reader through recent advances in structural optimization and stochastic optimization.
Описание: This monograph provides a comprehensive overview of methods for searching, evaluating, and optimizing highway location and alignments using genetic algorithms (GAs), a powerful Artificial Intelligence (AI) technique. It presents a two-level programming structure to deal with the effects of varying highway location on traffic level changes in surrounding road networks within the highway location search and alignment optimization process. In addition, the proposed method evaluates environmental impacts as well as all relevant highway costs associated with its construction, operation, and maintenance. The monograph first covers various search methods, relevant cost functions, constraints, computational efficiency, and solution quality issues arising from optimizing the highway alignment optimization (HAO) problem. It then focuses on applications of a special-purpose GA in the HAO problem where numerous highway alignments are generated and evaluated, and finally the best ones are selected based on costs, traffic impacts, safety, energy, and environmental considerations. A review of other promising optimization methods for the HAO problem is also provided in this monograph.
Автор: Kochenderfer Mykel J., Wheeler Tim A. Название: Algorithms for Optimization ISBN: 0262039427 ISBN-13(EAN): 9780262039420 Издательство: MIT Press Рейтинг: Цена: 14390.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: A comprehensive introduction to optimization with a focus on practical algorithms for the design of engineering systems.
This book offers a comprehensive introduction to optimization with a focus on practical algorithms. The book approaches optimization from an engineering perspective, where the objective is to design a system that optimizes a set of metrics subject to constraints. Readers will learn about computational approaches for a range of challenges, including searching high-dimensional spaces, handling problems where there are multiple competing objectives, and accommodating uncertainty in the metrics. Figures, examples, and exercises convey the intuition behind the mathematical approaches. The text provides concrete implementations in the Julia programming language.
Topics covered include derivatives and their generalization to multiple dimensions; local descent and first- and second-order methods that inform local descent; stochastic methods, which introduce randomness into the optimization process; linear constrained optimization, when both the objective function and the constraints are linear; surrogate models, probabilistic surrogate models, and using probabilistic surrogate models to guide optimization; optimization under uncertainty; uncertainty propagation; expression optimization; and multidisciplinary design optimization. Appendixes offer an introduction to the Julia language, test functions for evaluating algorithm performance, and mathematical concepts used in the derivation and analysis of the optimization methods discussed in the text. The book can be used by advanced undergraduates and graduate students in mathematics, statistics, computer science, any engineering field, (including electrical engineering and aerospace engineering), and operations research, and as a reference for professionals.
Автор: Kapoor Vivek, Dey Shubhamoy Название: Genetic Algorithms and Applications for Stock Trading Optimization ISBN: 1799841057 ISBN-13(EAN): 9781799841050 Издательство: Mare Nostrum (Eurospan) Рейтинг: Цена: 35897.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Genetic algorithms (GAs) are based on Darwin's theory of natural selection and survival of the fittest. They are designed to competently look for solutions to big and multifaceted problems. Genetic algorithms are wide groups of interrelated events with divided steps. Each step has dissimilarities, which leads to a broad range of connected actions. Genetic algorithms are used to improve trading systems, such as to optimize a trading rule or parameters of a predefined multiple indicator market trading system.
Genetic Algorithms and Applications for Stock Trading Optimization is a complete reference source to genetic algorithms that explains how they might be used to find trading strategies, as well as their use in search and optimization. It covers the functions of genetic algorithms internally, computer implementation of pseudo-code of genetic algorithms in C++, technical analysis for stock market forecasting, and research outcomes that apply in the stock trading system. This book is ideal for computer scientists, IT specialists, data scientists, managers, executives, professionals, academicians, researchers, graduate-level programs, research programs, and post-graduate students of engineering and science.
Автор: Masatoshi Sakawa Название: Genetic Algorithms and Fuzzy Multiobjective Optimization ISBN: 146135594X ISBN-13(EAN): 9781461355946 Издательство: Springer Рейтинг: Цена: 20962.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Автор: J?rgen Branke Название: Evolutionary Optimization in Dynamic Environments ISBN: 1461353009 ISBN-13(EAN): 9781461353003 Издательство: Springer Рейтинг: Цена: 27950.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru