Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Finite Volumes for Complex Applications VIII - Hyperbolic, Elliptic and Parabolic Problems, Cl?ment Canc?s; Pascal Omnes


Варианты приобретения
Цена: 20962.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Cl?ment Canc?s; Pascal Omnes
Название:  Finite Volumes for Complex Applications VIII - Hyperbolic, Elliptic and Parabolic Problems
ISBN: 9783319861524
Издательство: Springer
Классификация:




ISBN-10: 3319861522
Обложка/Формат: Soft cover
Страницы: 559
Вес: 0.88 кг.
Дата издания: 2018
Серия: Springer Proceedings in Mathematics & Statistics
Язык: English
Издание: Softcover reprint of
Иллюстрации: 149 illustrations, color; 18 illustrations, black and white; xv, 559 p. 167 illus., 149 illus. in color.
Размер: 234 x 156 x 30
Читательская аудитория: Professional & vocational
Ключевые слова: Computational Mathematics and Numerical Analysis
Основная тема: Mathematics
Подзаголовок: FVCA 8, Lille, France, June 2017
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание:

PART 4. Hyperbolic Problems. David Iampietro, Frederic Daude, Pascal Galon, and Jean-Marc Herard, A Weighted Splitting Approach For Low-Mach Number Flows.-

Florence Hubert and Remi Tesson, Weno scheme for transport equation on unstructured grids with a DDFV approach.- M.J. Castro, J.M. Gallardo and A. Marquina, New types of Jacobian-free approximate Riemann solvers for hyperbolic systems.- Charles Demay, Christian Bourdarias, Benoıt de Laage de Meux, Stephane Gerbi and Jean-Marc Herard, A fractional step method to simulate mixed flows in pipes with a compressible two-layer model.- Theo Corot, A second order cell-centered scheme for Lagrangian hydrodynamics.- Clement Colas, Martin Ferrand, Jean-Marc Herard, Erwan Le Coupanec and Xavier Martin, An implicit integral formulation for the modeling of inviscid fluid flows in domains containing obstacles.- Christophe Chalons and Maxime Stauffert, A high-order Discontinuous Galerkin Lagrange Projection scheme for the barotropic Euler equations.- Christophe Chalons, Regis Duvigneau and Camilla Fiorini, Sensitivity analysis for the Euler equations in Lagrangian coordinates.- Jooyoung Hahn, Karol Mikula, Peter Frolkovic, and Branislav Basara, Semi-implicit level set method with inflow-based gradient in a polyhedron mesh.- Thierry Goudon, Julie Llobell and Sebastian Minjeaud, A staggered scheme for the Euler equations.- Christian Bourdarias, Stephane Gerbi and Ralph Lteif, A numerical scheme for the propagation of internal waves in an oceanographic model.- Hamza Boukili and Jean-Marc Herard, A splitting scheme for three-phase flow models.- M. J Castro, C. Escalante and T. Morales de Luna, Modelling and simulation of non-hydrostatic shallow flows.- Svetlana Tokareva and Eleuterio Toro, A flux splitting method for the Baer-Nunziato equations of compressible two-phase flow.- Mohamed Boubekeur and Fayssal Benkhaldoun and Mohammed Seaid, GPU accelerated finite volume methods for three-dimensional shallow water flows.- Ward Melis, Thomas Rey and Giovanni Samaey, Projective integration for nonlinear BGK kinetic equations.- Lei Zhang, Jean-Michel Ghidaglia and Anela Kumbaro, Asymptotic preserving property of a semi-implicit method.- Sebastien Boyaval, A Finite-Volume discretization of viscoelastic Saint-Venant equations for FENE-P fluids.- David Coulette, Emmanuel Franck, Philippe Helluy, Michel Mehrenberger, Laurent Navoret, Palindromic Discontinuous Galerkin Method.- M. Lukacova-Medvidova, J. Rosemeier, P. Spichtinger and B. Wiebe, IMEX finite volume methods for cloud simulation.- Raimund Burger and Ilja Kroker, Hybrid stochastic Galerkin finite volumes for the diffusively corrected Lighthill-Whitham-Richards traffic model.- Hamed Zakerzadeh, The RS-IMEX scheme for the rotating shallow water equations with the Coriolis force.- Emmanuel Audusse, Minh Hieu Do, Pascal Omnes, Yohan Penel, Analysis of Apparent Topography scheme for the linear wave equation with Coriolis force.- N. Aıssiouene, M-O. Bristeau, E. Godlewski, A. Mangeney, C. Pares and J. Sainte-Marie, Application of a combined finite element - finite volume method to a 2D non-hydrostatic shallow water problem.- Emanuela Abbate, Angelo Iollo and Gabriella Puppo, A relaxation scheme for the simulation of low Mach number flows.- Stefan Vater, Nicole Beisiegel and Jorn Behrens, Comparison of wetting and drying between a RKDG2 method and classical FV based second-order hydrostatic reconstruction.- Anja Jeschke, Stefan Vater and J]orn Behrens, A Discontinuous Galerkin Method for Non-Hydrostatic Shallow Water Flows.- Remi Abgrall and Paola Bacigaluppi, Design of a Second-Order Fully Explicit Residual Distribution Scheme for Compressible Multiphase Flows.- Martin Campos Pinto, An Unstructured Forward-Backward Lagrangian Scheme for Transport Problems.- Nicole Goutal, Minh-Hoang Le and Philippe Ung, A Godunov-type scheme for Shallow Water equations dedicated to simulations of overland flows on stepped slop



Theory, Numerics and Applications of Hyperbolic Problems I

Автор: Christian Klingenberg; Michael Westdickenberg
Название: Theory, Numerics and Applications of Hyperbolic Problems I
ISBN: 3030082725 ISBN-13(EAN): 9783030082727
Издательство: Springer
Рейтинг:
Цена: 32142.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The first of two volumes, this edited proceedings book features research presented at the XVI International Conference on Hyperbolic Problems held in Aachen, Germany in summer 2016. It focuses on the theoretical, applied, and computational aspects of hyperbolic partial differential equations (systems of hyperbolic conservation laws, wave equations, etc.) and of related mathematical models (PDEs of mixed type, kinetic equations, nonlocal or/and discrete models) found in the field of applied sciences.

Finite Volumes for Complex Applications VIII - Hyperbolic, Elliptic and Parabolic Problems

Автор: Cl?ment Canc?s; Pascal Omnes
Название: Finite Volumes for Complex Applications VIII - Hyperbolic, Elliptic and Parabolic Problems
ISBN: 3319573934 ISBN-13(EAN): 9783319573939
Издательство: Springer
Рейтинг:
Цена: 23757.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

This book is the second volume of proceedings of the 8th conference on "Finite Volumes for Complex Applications" (Lille, June 2017). It includes reviewed contributions reporting successful applications in the fields of fluid dynamics, computational geosciences, structural analysis, nuclear physics, semiconductor theory and other topics.

The finite volume method in its various forms is a space discretization technique for partial differential equations based on the fundamental physical principle of conservation, and recent decades have brought significant advances in the theoretical understanding of the method. Many finite volume methods preserve further qualitative or asymptotic properties, including maximum principles, dissipativity, monotone decay of free energy, and asymptotic stability. Due to these properties, finite volume methods belong to the wider class of compatible discretization methods, which preserve qualitative properties of continuous problems at the discrete level. This structural approach to the discretization of partial differential equations becomes particularly important for multiphysics and multiscale applications.

The book is useful for researchers, PhD and master's level students in numerical analysis, scientific computing and related fields such as partial differential equations, as well as for engineers working in numerical modeling and simulations.

Finite Volumes for Complex Applications VII-Elliptic, Parabolic and Hyperbolic Problems

Автор: J?rgen Fuhrmann; Mario Ohlberger; Christian Rohde
Название: Finite Volumes for Complex Applications VII-Elliptic, Parabolic and Hyperbolic Problems
ISBN: 3319382888 ISBN-13(EAN): 9783319382883
Издательство: Springer
Рейтинг:
Цена: 16769.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The methods considered in the 7th conference on "Finite Volumes for Complex Applications" (Berlin, June 2014) have properties which offer distinct advantages for a number of applications.

Finite Volumes for Complex Applications VII-Elliptic, Parabolic and Hyperbolic Problems

Автор: J?rgen Fuhrmann; Mario Ohlberger; Christian Rohde
Название: Finite Volumes for Complex Applications VII-Elliptic, Parabolic and Hyperbolic Problems
ISBN: 3319055909 ISBN-13(EAN): 9783319055909
Издательство: Springer
Рейтинг:
Цена: 22359.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The methods considered in the 7th conference on "Finite Volumes for Complex Applications" (Berlin, June 2014) have properties which offer distinct advantages for a number of applications.

Nonlinear Parabolic Equations and Hyperbolic-Parabolic Coupled Systems

Автор: Zheng, Songmu
Название: Nonlinear Parabolic Equations and Hyperbolic-Parabolic Coupled Systems
ISBN: 0367448971 ISBN-13(EAN): 9780367448974
Издательство: Taylor&Francis
Рейтинг:
Цена: 9492.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book is devoted to the global existence, uniqueness and asymptotic behaviour of smooth solutions to nonlinear parabolic equations and nonlinear hyperbolic-parabolic coupled systems for both small and large initial data. It presents concepts and facts about Sobolev space.

Hyperbolic Problems: Theory, Numerics, Applications

Автор: Heinrich Freist?hler; Gerald Warnecke
Название: Hyperbolic Problems: Theory, Numerics, Applications
ISBN: 3034895372 ISBN-13(EAN): 9783034895378
Издательство: Springer
Рейтинг:
Цена: 13974.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Numerically oriented articles study finite difference, finite volume, and finite ele- ment schemes, adaptive, multiresolution, and artificial dissipation methods.

Theory, Numerics and Applications of Hyperbolic Problems II

Автор: Christian Klingenberg; Michael Westdickenberg
Название: Theory, Numerics and Applications of Hyperbolic Problems II
ISBN: 3030062511 ISBN-13(EAN): 9783030062514
Издательство: Springer
Рейтинг:
Цена: 32142.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The second of two volumes, this edited proceedings book features research presented at the XVI International Conference on Hyperbolic Problems held in Aachen, Germany in summer 2016. It focuses on the theoretical, applied, and computational aspects of hyperbolic partial differential equations (systems of hyperbolic conservation laws, wave equations, etc.) and of related mathematical models (PDEs of mixed type, kinetic equations, nonlocal or/and discrete models) found in the field of applied sciences.

Hyperbolic Problems: Theory, Numerics, Applications

Автор: Michael Fey; Rolf Jeltsch
Название: Hyperbolic Problems: Theory, Numerics, Applications
ISBN: 3034897448 ISBN-13(EAN): 9783034897440
Издательство: Springer
Рейтинг:
Цена: 20962.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The articles, both theoretical and numerical, encompass a wide range of applications, such as nonlinear waves in solids, various computational fluid dynamics from small-scale combustion to relativistic astrophysical problems, multiphase phenomena and geometrical optics.

Hyperbolic Problems: Theory, Numerics, Applications

Автор: Sylvie Benzoni-Gavage; Denis Serre
Название: Hyperbolic Problems: Theory, Numerics, Applications
ISBN: 3662501694 ISBN-13(EAN): 9783662501696
Издательство: Springer
Рейтинг:
Цена: 16065.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This volume contains papers that were presented at HYP2006, the eleventh international Conference on Hyperbolic Problems: Theory, Numerics and Applications.

Hyperbolic Problems: Theory, Numerics, Applications

Автор: Rolf Jeltsch; Michael Fey
Название: Hyperbolic Problems: Theory, Numerics, Applications
ISBN: 3034897421 ISBN-13(EAN): 9783034897426
Издательство: Springer
Рейтинг:
Цена: 6986.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The latter part of the 3rd millennium BC witnessed severe dislocations in the social, economic and political structures of the lands at the eastern end of the Mediterranean Sea - the Levant. This volume contains the papers given at a conference held in 2004 at the British Museum, presenting both new evidence and new theories bearing on this transitional period.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия