Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support, Danail Stoyanov; Zeike Taylor; Gustavo Carneiro; T


Варианты приобретения
Цена: 9222.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Danail Stoyanov; Zeike Taylor; Gustavo Carneiro; T
Название:  Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support
ISBN: 9783030008888
Издательство: Springer
Классификация:



ISBN-10: 3030008886
Обложка/Формат: Soft cover
Страницы: 387
Вес: 0.62 кг.
Дата издания: 2018
Серия: Image Processing, Computer Vision, Pattern Recognition, and Graphics
Язык: English
Издание: 1st ed. 2018
Иллюстрации: 159 illustrations, black and white; xvii, 387 p. 159 illus.
Размер: 234 x 156 x 21
Читательская аудитория: Professional & vocational
Основная тема: Computer Science
Подзаголовок: 4th International Workshop, DLMIA 2018, and 8th International Workshop, ML-CDS 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 20, 2018, Proceedings
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание: This book constitutes the refereed joint proceedings of the 4th International Workshop on Deep Learning in Medical Image Analysis, DLMIA 2018, and the 8th International Workshop on Multimodal Learning for Clinical Decision Support, ML-CDS 2018, held in conjunction with the 21st International Conference on Medical Imaging and Computer-Assisted Intervention, MICCAI 2018, in Granada, Spain, in September 2018.The 39 full papers presented at DLMIA 2018 and the 4 full papers presented at ML-CDS 2018 were carefully reviewed and selected from 85 submissions to DLMIA and 6 submissions to ML-CDS. The DLMIA papers focus on the design and use of deep learning methods in medical imaging. The ML-CDS papers discuss new techniques of multimodal mining/retrieval and their use in clinical decision support.
Дополнительное описание: Semi-Automated Extraction of Crohns Disease MR Imaging Markers using a 3D Residual CNN with Distance Prior.- Weakly Supervised Localisation for Fetal Ultrasound Images.- Learning to Decode 7T-like MR Image Reconstruction from 3T MR Images.- Segmentation o



Interpretability of Machine Intelligence in Medical Image Computing and Multimodal Learning for Clinical Decision Support

Автор: Kenji Suzuki; Mauricio Reyes; Tanveer Syeda-Mahmoo
Название: Interpretability of Machine Intelligence in Medical Image Computing and Multimodal Learning for Clinical Decision Support
ISBN: 3030338495 ISBN-13(EAN): 9783030338497
Издательство: Springer
Рейтинг:
Цена: 6986.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

Second International Workshop on Interpretability of Machine Intelligence in Medical Image Computing (iMIMIC 2019).- Testing the robustness of attribution methods for convolutional neural networks in MRI-based Alzheimer's disease classification.- UBS: A Dimension-Agnostic Metric for Concept Vector Interpretability Applied to Radiomics.- Generation of Multimodal Justification Using Visual Word Constraint Model for Explainable Computer-Aided Diagnosis.- Incorporating Task-Specific Structural Knowledge into CNNs for Brain Midline Shift Detection.- Guideline-based Additive Explanation for Computer-Aided Diagnosis of Lung Nodules.- Deep neural network or dermatologist?.- Towards Interpretability of Segmentation Networks by analyzing DeepDreams.- 9th International Workshop on Multimodal Learning for Clinical Decision Support (ML-CDS 2019).- Towards Automatic Diagnosis from Multi-modal Medical Data.- Deep Learning based Multi-Modal Registration for Retinal Imaging.- Automated Enriched Medical Concept Generation for Chest X-ray Images.

Multimodal Learning toward Micro-Video Understanding

Автор: Nie Liqiang, Liu Meng, Song Xuemeng
Название: Multimodal Learning toward Micro-Video Understanding
ISBN: 1681736284 ISBN-13(EAN): 9781681736280
Издательство: Mare Nostrum (Eurospan)
Цена: 12335.00 р.
Наличие на складе: Нет в наличии.

Описание:

Micro-videos, a new form of user-generated content, have been spreading widely across various social platforms, such as Vine, Kuaishou, and TikTok.

Different from traditional long videos, micro-videos are usually recorded by smart mobile devices at any place within a few seconds. Due to their brevity and low bandwidth cost, micro-videos are gaining increasing user enthusiasm. The blossoming of micro-videos opens the door to the possibility of many promising applications, ranging from network content caching to online advertising. Thus, it is highly desirable to develop an effective scheme for high-order micro-video understanding.

Micro-video understanding is, however, non-trivial due to the following challenges: (1) how to represent micro-videos that only convey one or few high-level themes or concepts; (2) how to utilize the hierarchical structure of venue categories to guide micro-video analysis; (3) how to alleviate the influence of low quality caused by complex surrounding environments and camera shake; (4) how to model multimodal sequential data, i.e. textual, acoustic, visual, and social modalities to enhance micro-video understanding; and (5) how to construct large-scale benchmark datasets for analysis. These challenges have been largely unexplored to date.

In this book, we focus on addressing the challenges presented above by proposing some state-of-the-art multimodal learning theories. To demonstrate the effectiveness of these models, we apply them to three practical tasks of micro-video understanding: popularity prediction, venue category estimation, and micro-video routing. Particularly, we first build three large-scale real-world micro-video datasets for these practical tasks. We then present a multimodal transductive learning framework for micro-video popularity prediction. Furthermore, we introduce several multimodal cooperative learning approaches and a multimodal transfer learning scheme for micro-video venue category estimation. Meanwhile, we develop a multimodal sequential learning approach for micro-video recommendation. Finally, we conclude the book and figure out the future research directions in multimodal learning toward micro-video understanding.

Multimodal Corpora

Автор: Michael Kipp; Jean-Claude Martin; Patrizia Paggio;
Название: Multimodal Corpora
ISBN: 3642047920 ISBN-13(EAN): 9783642047923
Издательство: Springer
Рейтинг:
Цена: 9781.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Based on the International Workshop on "Multimodal Corpora: From Models of Natural Interaction to Systems and Applications", this expanded collection presents a comprehensive review of the current research in the field.

Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support

Автор: M. Jorge Cardoso; Tal Arbel; Gustavo Carneiro; Tan
Название: Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support
ISBN: 3319675575 ISBN-13(EAN): 9783319675572
Издательство: Springer
Рейтинг:
Цена: 9083.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

This book constitutes the refereed joint proceedings of the Third International Workshop on Deep Learning in Medical Image Analysis, DLMIA 2017, and the 6th International Workshop on Multimodal Learning for Clinical Decision Support, ML-CDS 2017, held in conjunction with the 20th International Conference on Medical Imaging and Computer-Assisted Intervention, MICCAI 2017, in Quebec City, QC, Canada, in September 2017.

The 38 full papers presented at DLMIA 2017 and the 5 full papers presented at ML-CDS 2017 were carefully reviewed and selected. The DLMIA papers focus on the design and use of deep learning methods in medical imaging. The ML-CDS papers discuss new techniques of multimodal mining/retrieval and their use in clinical decision support.

Multimodal Brain Image Analysis

Автор: Li Shen; Tianming Liu; Pew-Thian Yap; Heng Huang;
Название: Multimodal Brain Image Analysis
ISBN: 3319021257 ISBN-13(EAN): 9783319021256
Издательство: Springer
Рейтинг:
Цена: 6986.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book constitutes the refereed proceedings of the Third International Workshop on Multimodal Brain Image Analysis, MBIA 2013, held in Nagoya, Japan, on September 22, 2013 in conjunction with the 16th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI.

Multiscale Multimodal Medical Imaging

Автор: Quanzheng Li; Richard Leahy; Bin Dong; Xiang Li
Название: Multiscale Multimodal Medical Imaging
ISBN: 303037968X ISBN-13(EAN): 9783030379681
Издательство: Springer
Рейтинг:
Цена: 6986.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book constitutes the refereed proceedings of the First International Workshop on Multiscale Multimodal Medical Imaging, MMMI 2019, held in conjunction with MICCAI 2019 in Shenzhen, China, in October 2019. The 13 papers presented were carefully reviewed and selected from 18 submissions.

Multimodal Interaction in Image and Video Applications

Автор: Angel D. Sappa; Jordi Vitri?
Название: Multimodal Interaction in Image and Video Applications
ISBN: 3642439837 ISBN-13(EAN): 9783642439834
Издательство: Springer
Рейтинг:
Цена: 16977.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book shows case studies of multimodal interactive technologies for both image and video applications. They cover a wide spectrum of applications, ranging from interactive handwriting transcriptions to human-robot interactions in real environments.

Multimodal Biometrics And Intelligent Image Processing For Security System

Автор: Gavrilova & Monwar
Название: Multimodal Biometrics And Intelligent Image Processing For Security System
ISBN: 1466636467 ISBN-13(EAN): 9781466636460
Издательство: Mare Nostrum (Eurospan)
Рейтинг:
Цена: 28413.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Although it is a relatively new approach to biometric knowledge representation, multimodal biometric systems have emerged as an innovative alternative that aids in developing a more reliable and efficient security system. <br><br><em>Multimodal Biometrics and Intelligent Image Processing for Security Systems</em> provides an in-depth description of existing and fresh fusion approaches for multimodal biometric systems. Covering relevant topics affecting the security and intelligent industries, this reference will be useful for readers from both academia and industry in the areas of pattern recognition, security, and image processing domains.

Multimodal Analytics for Next-Generation Big Data Technologies and Applications

Автор: Kah Phooi Seng; Li-minn Ang; Alan Wee-Chung Liew;
Название: Multimodal Analytics for Next-Generation Big Data Technologies and Applications
ISBN: 3319975978 ISBN-13(EAN): 9783319975979
Издательство: Springer
Рейтинг:
Цена: 16769.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This edited book will serve as a source of reference for technologies and applications for multimodality data analytics in big data environments. After an introduction, the editors organize the book into four main parts on sentiment, affect and emotion analytics for big multimodal data; unsupervised learning strategies for big multimodal data; supervised learning strategies for big multimodal data; and multimodal big data processing and applications. The book will be of value to researchers, professionals and students in engineering and computer science, particularly those engaged with image and speech processing, multimodal information processing, data science, and artificial intelligence.

Multimodal Brain Image Analysis and Mathematical Foundations of Computational Anatomy

Автор: Dajiang Zhu; Jingwen Yan; Heng Huang; Li Shen; Pau
Название: Multimodal Brain Image Analysis and Mathematical Foundations of Computational Anatomy
ISBN: 303033225X ISBN-13(EAN): 9783030332259
Издательство: Springer
Рейтинг:
Цена: 8104.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: MBIA.- Non-rigid Registration of White Matter Tractography Using Coherent Point Drift Algorithm.- An Edge Enhanced SRGAN for MRI Super Resolution in Slice-selection Direction.- Exploring Functional Connectivity Biomarker in Autism Using Group-wise Sparse Representation.- Classifying Stages of Mild Cognitive Impairment via Augmented Graph Embedding.- Mapping the spatio-temporal functional coherence in the resting brain.- Species-Preserved Structural Connections Revealed by Sparse Tensor CCA.- Identification of Abnormal Cortical 3-hinge Folding Patterns on Autism Spectral Brains.- Exploring Brain Hemodynamic Response Patterns Via Deep Recurrent Autoencoder.- 3D Convolutional Long-short Term Memory Network for Spatiotemporal Modeling of fMRI Data.- Biological Knowledge Guided Deep Neural Network for Genotype-Phenotype Association Study.- Learning Human Cognition via fMRI Analysis Using 3D CNN and Graph Neural Network.- CU-Net: Cascaded U-Net with Loss Weighted Sampling for Brain Tumor Segmentation.- BrainPainter: A software for the visualisation of brain structures, biomarkers and associated pathological processes.- Structural Similarity based Anatomical and Functional Brain Imaging Fusion.- Multimodal Brain Tumor Segmentation Using Encoder-Decoder with Hierarchical Separable Convolution.- Prioritizing Amyloid Imaging Biomarkers in Alzheimer's Disease via Learning to Rank.- MFCA.- Diffeomorphic Metric Learning and Template Optimization for Registration-Based Predictive Models.- 3D mapping of serial histology sections with anomalies using a novel robust deformable registration algorithm.- Spatiotemporal Modeling for Image Time Series with Appearance Change: Application to Early Brain Development.- Surface Foliation Based Brain Morphometry Analysis.- Mixture Probabilistic Principal Geodesic Analysis.- A Geodesic Mixed Effects Model in Kendall's Shape Space.- An as-invariant-as-possible GL+(3)-based Statistical Shape Model.

Multimodal Learning toward Micro-Video Understanding

Автор: Nie Liqiang, Liu Meng, Song Xuemeng
Название: Multimodal Learning toward Micro-Video Understanding
ISBN: 1681736306 ISBN-13(EAN): 9781681736303
Издательство: Mare Nostrum (Eurospan)
Цена: 15523.00 р.
Наличие на складе: Нет в наличии.

Описание:

Micro-videos, a new form of user-generated content, have been spreading widely across various social platforms, such as Vine, Kuaishou, and TikTok.

Different from traditional long videos, micro-videos are usually recorded by smart mobile devices at any place within a few seconds. Due to their brevity and low bandwidth cost, micro-videos are gaining increasing user enthusiasm. The blossoming of micro-videos opens the door to the possibility of many promising applications, ranging from network content caching to online advertising. Thus, it is highly desirable to develop an effective scheme for high-order micro-video understanding.

Micro-video understanding is, however, non-trivial due to the following challenges: (1) how to represent micro-videos that only convey one or few high-level themes or concepts; (2) how to utilize the hierarchical structure of venue categories to guide micro-video analysis; (3) how to alleviate the influence of low quality caused by complex surrounding environments and camera shake; (4) how to model multimodal sequential data, i.e. textual, acoustic, visual, and social modalities to enhance micro-video understanding; and (5) how to construct large-scale benchmark datasets for analysis. These challenges have been largely unexplored to date.

In this book, we focus on addressing the challenges presented above by proposing some state-of-the-art multimodal learning theories. To demonstrate the effectiveness of these models, we apply them to three practical tasks of micro-video understanding: popularity prediction, venue category estimation, and micro-video routing. Particularly, we first build three large-scale real-world micro-video datasets for these practical tasks. We then present a multimodal transductive learning framework for micro-video popularity prediction. Furthermore, we introduce several multimodal cooperative learning approaches and a multimodal transfer learning scheme for micro-video venue category estimation. Meanwhile, we develop a multimodal sequential learning approach for micro-video recommendation. Finally, we conclude the book and figure out the future research directions in multimodal learning toward micro-video understanding.

Big data in multimodal medical imaging

Название: Big data in multimodal medical imaging
ISBN: 113850453X ISBN-13(EAN): 9781138504530
Издательство: Taylor&Francis
Рейтинг:
Цена: 23734.00 р.
Наличие на складе: Поставка под заказ.

Описание: There is an urgent need to develop and integrate new statistical, mathematical, visualization, and computational models with the ability to analyze Big Data in order to retrieve useful information to aid clinicians in accurately diagnosing and treating patients.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия