Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Multimodal Brain Image Analysis and Mathematical Foundations of Computational Anatomy, Dajiang Zhu; Jingwen Yan; Heng Huang; Li Shen; Pau


Варианты приобретения
Цена: 8104.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Dajiang Zhu; Jingwen Yan; Heng Huang; Li Shen; Pau
Название:  Multimodal Brain Image Analysis and Mathematical Foundations of Computational Anatomy
ISBN: 9783030332259
Издательство: Springer
Классификация:



ISBN-10: 303033225X
Обложка/Формат: Soft cover
Страницы: 230
Вес: 0.39 кг.
Дата издания: 2019
Серия: Image Processing, Computer Vision, Pattern Recognition, and Graphics
Язык: English
Издание: 1st ed. 2019
Иллюстрации: 91 illustrations, color; 22 illustrations, black and white; xvii, 230 p. 113 illus., 91 illus. in color.
Размер: 234 x 156 x 14
Читательская аудитория: Professional & vocational
Основная тема: Computer Science
Подзаголовок: 4th International Workshop, MBIA 2019, and 7th International Workshop, MFCA 2019, Held in Conjunction with MICCAI 2019, Shenzhen, China, October 17, 2019, Proceedings
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание: MBIA.- Non-rigid Registration of White Matter Tractography Using Coherent Point Drift Algorithm.- An Edge Enhanced SRGAN for MRI Super Resolution in Slice-selection Direction.- Exploring Functional Connectivity Biomarker in Autism Using Group-wise Sparse Representation.- Classifying Stages of Mild Cognitive Impairment via Augmented Graph Embedding.- Mapping the spatio-temporal functional coherence in the resting brain.- Species-Preserved Structural Connections Revealed by Sparse Tensor CCA.- Identification of Abnormal Cortical 3-hinge Folding Patterns on Autism Spectral Brains.- Exploring Brain Hemodynamic Response Patterns Via Deep Recurrent Autoencoder.- 3D Convolutional Long-short Term Memory Network for Spatiotemporal Modeling of fMRI Data.- Biological Knowledge Guided Deep Neural Network for Genotype-Phenotype Association Study.- Learning Human Cognition via fMRI Analysis Using 3D CNN and Graph Neural Network.- CU-Net: Cascaded U-Net with Loss Weighted Sampling for Brain Tumor Segmentation.- BrainPainter: A software for the visualisation of brain structures, biomarkers and associated pathological processes.- Structural Similarity based Anatomical and Functional Brain Imaging Fusion.- Multimodal Brain Tumor Segmentation Using Encoder-Decoder with Hierarchical Separable Convolution.- Prioritizing Amyloid Imaging Biomarkers in Alzheimers Disease via Learning to Rank.- MFCA.- Diffeomorphic Metric Learning and Template Optimization for Registration-Based Predictive Models.- 3D mapping of serial histology sections with anomalies using a novel robust deformable registration algorithm.- Spatiotemporal Modeling for Image Time Series with Appearance Change: Application to Early Brain Development.- Surface Foliation Based Brain Morphometry Analysis.- Mixture Probabilistic Principal Geodesic Analysis.- A Geodesic Mixed Effects Model in Kendalls Shape Space.- An as-invariant-as-possible GL+(3)-based Statistical Shape Model.
Дополнительное описание: MBIA.- Non-rigid Registration of White Matter Tractography Using Coherent Point Drift Algorithm.- An Edge Enhanced SRGAN for MRI Super Resolution in Slice-selection Direction.- Exploring Functional Connectivity Biomarker in Autism Using Group-wise Sparse



SmartKom: Foundations of Multimodal Dialogue Systems

Автор: Wolfgang Wahlster
Название: SmartKom: Foundations of Multimodal Dialogue Systems
ISBN: 3642062660 ISBN-13(EAN): 9783642062667
Издательство: Springer
Рейтинг:
Цена: 18167.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: With contributions by leading scientists in the field, this book gives the first comprehensive overview of the results of the seminal SmartKom project one of the most advanced multimodal dialogue systems worldwide.

"
Multimodal Biometrics And Intelligent Image Processing For Security System

Автор: Gavrilova & Monwar
Название: Multimodal Biometrics And Intelligent Image Processing For Security System
ISBN: 1466636467 ISBN-13(EAN): 9781466636460
Издательство: Mare Nostrum (Eurospan)
Рейтинг:
Цена: 28413.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Although it is a relatively new approach to biometric knowledge representation, multimodal biometric systems have emerged as an innovative alternative that aids in developing a more reliable and efficient security system. <br><br><em>Multimodal Biometrics and Intelligent Image Processing for Security Systems</em> provides an in-depth description of existing and fresh fusion approaches for multimodal biometric systems. Covering relevant topics affecting the security and intelligent industries, this reference will be useful for readers from both academia and industry in the areas of pattern recognition, security, and image processing domains.

Multimodal Brain Image Analysis

Автор: Li Shen; Tianming Liu; Pew-Thian Yap; Heng Huang;
Название: Multimodal Brain Image Analysis
ISBN: 3319021257 ISBN-13(EAN): 9783319021256
Издательство: Springer
Рейтинг:
Цена: 6986.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book constitutes the refereed proceedings of the Third International Workshop on Multimodal Brain Image Analysis, MBIA 2013, held in Nagoya, Japan, on September 22, 2013 in conjunction with the 16th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI.

Multimodal Computational Attention for Scene Understanding and Robotics

Автор: Boris Schauerte
Название: Multimodal Computational Attention for Scene Understanding and Robotics
ISBN: 3319337947 ISBN-13(EAN): 9783319337944
Издательство: Springer
Рейтинг:
Цена: 18284.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book presents state-of-the-art computationalattention models that have been successfully tested in diverse applicationareas and can build the foundation for artificial systems to efficientlyexplore, analyze, and understand natural scenes.

Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support

Автор: M. Jorge Cardoso; Tal Arbel; Gustavo Carneiro; Tan
Название: Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support
ISBN: 3319675575 ISBN-13(EAN): 9783319675572
Издательство: Springer
Рейтинг:
Цена: 9083.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

This book constitutes the refereed joint proceedings of the Third International Workshop on Deep Learning in Medical Image Analysis, DLMIA 2017, and the 6th International Workshop on Multimodal Learning for Clinical Decision Support, ML-CDS 2017, held in conjunction with the 20th International Conference on Medical Imaging and Computer-Assisted Intervention, MICCAI 2017, in Quebec City, QC, Canada, in September 2017.

The 38 full papers presented at DLMIA 2017 and the 5 full papers presented at ML-CDS 2017 were carefully reviewed and selected. The DLMIA papers focus on the design and use of deep learning methods in medical imaging. The ML-CDS papers discuss new techniques of multimodal mining/retrieval and their use in clinical decision support.

Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support

Автор: Danail Stoyanov; Zeike Taylor; Gustavo Carneiro; T
Название: Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support
ISBN: 3030008886 ISBN-13(EAN): 9783030008888
Издательство: Springer
Рейтинг:
Цена: 9222.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book constitutes the refereed joint proceedings of the 4th International Workshop on Deep Learning in Medical Image Analysis, DLMIA 2018, and the 8th International Workshop on Multimodal Learning for Clinical Decision Support, ML-CDS 2018, held in conjunction with the 21st International Conference on Medical Imaging and Computer-Assisted Intervention, MICCAI 2018, in Granada, Spain, in September 2018.The 39 full papers presented at DLMIA 2018 and the 4 full papers presented at ML-CDS 2018 were carefully reviewed and selected from 85 submissions to DLMIA and 6 submissions to ML-CDS. The DLMIA papers focus on the design and use of deep learning methods in medical imaging. The ML-CDS papers discuss new techniques of multimodal mining/retrieval and their use in clinical decision support.

Multimodal Learning toward Micro-Video Understanding

Автор: Nie Liqiang, Liu Meng, Song Xuemeng
Название: Multimodal Learning toward Micro-Video Understanding
ISBN: 1681736306 ISBN-13(EAN): 9781681736303
Издательство: Mare Nostrum (Eurospan)
Цена: 15523.00 р.
Наличие на складе: Нет в наличии.

Описание:

Micro-videos, a new form of user-generated content, have been spreading widely across various social platforms, such as Vine, Kuaishou, and TikTok.

Different from traditional long videos, micro-videos are usually recorded by smart mobile devices at any place within a few seconds. Due to their brevity and low bandwidth cost, micro-videos are gaining increasing user enthusiasm. The blossoming of micro-videos opens the door to the possibility of many promising applications, ranging from network content caching to online advertising. Thus, it is highly desirable to develop an effective scheme for high-order micro-video understanding.

Micro-video understanding is, however, non-trivial due to the following challenges: (1) how to represent micro-videos that only convey one or few high-level themes or concepts; (2) how to utilize the hierarchical structure of venue categories to guide micro-video analysis; (3) how to alleviate the influence of low quality caused by complex surrounding environments and camera shake; (4) how to model multimodal sequential data, i.e. textual, acoustic, visual, and social modalities to enhance micro-video understanding; and (5) how to construct large-scale benchmark datasets for analysis. These challenges have been largely unexplored to date.

In this book, we focus on addressing the challenges presented above by proposing some state-of-the-art multimodal learning theories. To demonstrate the effectiveness of these models, we apply them to three practical tasks of micro-video understanding: popularity prediction, venue category estimation, and micro-video routing. Particularly, we first build three large-scale real-world micro-video datasets for these practical tasks. We then present a multimodal transductive learning framework for micro-video popularity prediction. Furthermore, we introduce several multimodal cooperative learning approaches and a multimodal transfer learning scheme for micro-video venue category estimation. Meanwhile, we develop a multimodal sequential learning approach for micro-video recommendation. Finally, we conclude the book and figure out the future research directions in multimodal learning toward micro-video understanding.

Interpretability of Machine Intelligence in Medical Image Computing and Multimodal Learning for Clinical Decision Support

Автор: Kenji Suzuki; Mauricio Reyes; Tanveer Syeda-Mahmoo
Название: Interpretability of Machine Intelligence in Medical Image Computing and Multimodal Learning for Clinical Decision Support
ISBN: 3030338495 ISBN-13(EAN): 9783030338497
Издательство: Springer
Рейтинг:
Цена: 6986.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

Second International Workshop on Interpretability of Machine Intelligence in Medical Image Computing (iMIMIC 2019).- Testing the robustness of attribution methods for convolutional neural networks in MRI-based Alzheimer's disease classification.- UBS: A Dimension-Agnostic Metric for Concept Vector Interpretability Applied to Radiomics.- Generation of Multimodal Justification Using Visual Word Constraint Model for Explainable Computer-Aided Diagnosis.- Incorporating Task-Specific Structural Knowledge into CNNs for Brain Midline Shift Detection.- Guideline-based Additive Explanation for Computer-Aided Diagnosis of Lung Nodules.- Deep neural network or dermatologist?.- Towards Interpretability of Segmentation Networks by analyzing DeepDreams.- 9th International Workshop on Multimodal Learning for Clinical Decision Support (ML-CDS 2019).- Towards Automatic Diagnosis from Multi-modal Medical Data.- Deep Learning based Multi-Modal Registration for Retinal Imaging.- Automated Enriched Medical Concept Generation for Chest X-ray Images.

Multimodal Learning toward Micro-Video Understanding

Автор: Nie Liqiang, Liu Meng, Song Xuemeng
Название: Multimodal Learning toward Micro-Video Understanding
ISBN: 1681736284 ISBN-13(EAN): 9781681736280
Издательство: Mare Nostrum (Eurospan)
Цена: 12335.00 р.
Наличие на складе: Нет в наличии.

Описание:

Micro-videos, a new form of user-generated content, have been spreading widely across various social platforms, such as Vine, Kuaishou, and TikTok.

Different from traditional long videos, micro-videos are usually recorded by smart mobile devices at any place within a few seconds. Due to their brevity and low bandwidth cost, micro-videos are gaining increasing user enthusiasm. The blossoming of micro-videos opens the door to the possibility of many promising applications, ranging from network content caching to online advertising. Thus, it is highly desirable to develop an effective scheme for high-order micro-video understanding.

Micro-video understanding is, however, non-trivial due to the following challenges: (1) how to represent micro-videos that only convey one or few high-level themes or concepts; (2) how to utilize the hierarchical structure of venue categories to guide micro-video analysis; (3) how to alleviate the influence of low quality caused by complex surrounding environments and camera shake; (4) how to model multimodal sequential data, i.e. textual, acoustic, visual, and social modalities to enhance micro-video understanding; and (5) how to construct large-scale benchmark datasets for analysis. These challenges have been largely unexplored to date.

In this book, we focus on addressing the challenges presented above by proposing some state-of-the-art multimodal learning theories. To demonstrate the effectiveness of these models, we apply them to three practical tasks of micro-video understanding: popularity prediction, venue category estimation, and micro-video routing. Particularly, we first build three large-scale real-world micro-video datasets for these practical tasks. We then present a multimodal transductive learning framework for micro-video popularity prediction. Furthermore, we introduce several multimodal cooperative learning approaches and a multimodal transfer learning scheme for micro-video venue category estimation. Meanwhile, we develop a multimodal sequential learning approach for micro-video recommendation. Finally, we conclude the book and figure out the future research directions in multimodal learning toward micro-video understanding.

Multimodal Interaction in Image and Video Applications

Автор: Angel D. Sappa; Jordi Vitri?
Название: Multimodal Interaction in Image and Video Applications
ISBN: 3642359310 ISBN-13(EAN): 9783642359316
Издательство: Springer
Рейтинг:
Цена: 19591.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book shows case studies of multimodal interactive technologies for both image and video applications. They cover a wide spectrum of applications, ranging from interactive handwriting transcriptions to human-robot interactions in real environments.

Multimodal Interaction in Image and Video Applications

Автор: Angel D. Sappa; Jordi Vitri?
Название: Multimodal Interaction in Image and Video Applications
ISBN: 3642439837 ISBN-13(EAN): 9783642439834
Издательство: Springer
Рейтинг:
Цена: 16977.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book shows case studies of multimodal interactive technologies for both image and video applications. They cover a wide spectrum of applications, ranging from interactive handwriting transcriptions to human-robot interactions in real environments.

The Temporal Structure of Multimodal Communication

Автор: Laszlo Hunyadi; Istv?n Szekr?nyes
Название: The Temporal Structure of Multimodal Communication
ISBN: 3030228940 ISBN-13(EAN): 9783030228941
Издательство: Springer
Рейтинг:
Цена: 13974.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The general focus of this book is on multimodal communication, which captures the temporal patterns of behavior in various dialogue settings. After an overview of current theoretical models of verbal and nonverbal communication cues, it presents studies on a range of related topics: paraverbal behavior patterns in the classroom setting; a proposed optimal methodology for conversational analysis; a study of time and mood at work; an experiment on the dynamics of multimodal interaction from the observer’s perspective; formal cues of uncertainty in conversation; how machines can know we understand them; and detecting topic changes using neural network techniques. A joint work bringing together psychologists, communication scientists, information scientists and linguists, the book will be of interest to those working on a wide range of applications from industry to home, and from health to security, with the main goals of revealing, embedding and implementing a rich spectrum of information on human behavior.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия