Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Managing Data From Knowledge Bases: Querying and Extraction, Wei Emma Zhang; Quan Z. Sheng


Варианты приобретения
Цена: 15372.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Wei Emma Zhang; Quan Z. Sheng
Название:  Managing Data From Knowledge Bases: Querying and Extraction
ISBN: 9783030069407
Издательство: Springer
Классификация:


ISBN-10: 3030069400
Обложка/Формат: Soft cover
Страницы: 139
Вес: 0.25 кг.
Дата издания: 2018
Язык: English
Издание: Softcover reprint of
Иллюстрации: 32 illustrations, color; 9 illustrations, black and white; xiii, 139 p. 41 illus., 32 illus. in color.
Размер: 234 x 156 x 8
Читательская аудитория: General (us: trade)
Основная тема: Computer Science
Подзаголовок: Querying and extraction
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание: In this book, the authors first address the research issues by providing a motivating scenario, followed by the exploration of the principles and techniques of the challenging topics. Then they solve the raised research issues by developing a series of methodologies. More specifically, the authors study the query optimization and tackle the query performance prediction for knowledge retrieval. They also handle unstructured data processing, data clustering for knowledge extraction. To optimize the queries issued through interfaces against knowledge bases, the authors propose a cache-based optimization layer between consumers and the querying interface to facilitate the querying and solve the latency issue. The cache depends on a novel learning method that considers the querying patterns from individual’s historical queries without having knowledge of the backing systems of the knowledge base. To predict the query performance for appropriate query scheduling, the authors examine the queries’ structural and syntactical features and apply multiple widely adopted prediction models. Their feature modelling approach eschews the knowledge requirement on both the querying languages and system.To extract knowledge from unstructured Web sources, the authors examine two kinds of Web sources containing unstructured data: the source code from Web repositories and the posts in programming question-answering communities. They use natural language processing techniques to pre-process the source codes and obtain the natural language elements. Then they apply traditional knowledge extraction techniques to extract knowledge. For the data from programming question-answering communities, the authors make the attempt towards building programming knowledge base by starting with paraphrase identification problems and develop novel features to accurately identify duplicate posts. For domain specific knowledge extraction, the authors propose to use clustering technique to separate knowledge into different groups. They focus on developing a new clustering algorithm that uses manifold constraint in the optimization task and achieves fast and accurate performance.For each model and approach presented in this dissertation, the authors have conducted extensive experiments to evaluate it using either public dataset or synthetic data they generated.
Дополнительное описание: 1 Introduction.- 2 Cache Based Optimization for Querying Curated Knowledge Bases.- 3 Query Performance Prediction on Knowledge Base.- 4 An Efficient Knowledge Clustering Algorithm.- 5 Knowledge Extraction from Unstructured Data on the Web.- 6 Building Kno



Semantics in Data and Knowledge Bases

Автор: Klaus-Dieter Schewe; Bernhard Thalheim
Название: Semantics in Data and Knowledge Bases
ISBN: 3540885935 ISBN-13(EAN): 9783540885931
Издательство: Springer
Рейтинг:
Цена: 9781.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Constitutes the refereed post-workshop proceedings of the Third International Workshop on Semantics in Data and Knowledge Bases, SDKB 2008, held in Nantes, France, on March 29, 2008. This title includes 6 revised full papers that were reviewed and selected.

Machine Learning and Knowledge Extraction

Автор: Andreas Holzinger; Peter Kieseberg; A Min Tjoa; Ed
Название: Machine Learning and Knowledge Extraction
ISBN: 3319668072 ISBN-13(EAN): 9783319668079
Издательство: Springer
Рейтинг:
Цена: 9083.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This new edition of the best-selling book focuses on various aspects of recruiting, including assessing an institution`s readiness to recruit international students, building human resource capacity for international recruitment, creating an international recruitment plan, recruiting international students from within the United States, measuring return on investment, and more.

Biomedical Data Management and Graph Online Querying

Автор: Wang
Название: Biomedical Data Management and Graph Online Querying
ISBN: 3319415751 ISBN-13(EAN): 9783319415758
Издательство: Springer
Рейтинг:
Цена: 6988.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

Information Retrieval and Data Analytics for Electronic Medical Records.- Vector Space Model for Encoding and Retrieving Longitudinal Medical Records Data.- The Study of the Compatibility Rules of Traditional Chinese Medicine Based on Apriori and HMETIS Hypergraph Partitioning Algorithm.- Comparing Small Graph Retrieval Performance for Ontology Concepts in Medical Texts.- Data Management and Visualization of Medical Data.- Maps of Human Disease: A Web-Based Framework for the Visualization of Human Disease Comorbidity and Clinical Profile.- Secure Similarity Queries: Enabling Precision Medicine with Privacy.- Time-, Energy-, and Monetary Cost-Aware Cache Design for a Mobile-Cloud Database System.- Biomedical Data Sharing and Integration.- Challenges of Reasoning with Multiple Knowledge Sources in the Context of Drug Induced Liver Injury.- BiobankCloud: a Platform for the Secure Storage, Sharing, and Processing of Large Biomedical Data Sets.- Medical Imaging Analytics.- Three-Dimensional Data Analytics for Pathology Imaging.- Automated Analysis of Muscle X-ray Diffraction Imaging with MCMC.- SparkGIS: Efficient Comparison and Evaluation of Algorithm Results in Tissue Image Analysis Studies.- Big-Graphs Online Querying.- Social Network Analytics: Beyond the Obvious.- S2X: Graph-Parallel Querying of RDF with GraphX.- The Time Has Come: Traversal and Reachability in Time-Varying Graphs.- Robust Cardinality Estimation for Subgraph Isomorphism Queries on Property Graphs.

Reasoning Web: Logical Foundation of Knowledge Graph Construction and Query Answering

Автор: Jeff Z. Pan; Diego Calvanese; Thomas Eiter; Ian Ho
Название: Reasoning Web: Logical Foundation of Knowledge Graph Construction and Query Answering
ISBN: 3319494929 ISBN-13(EAN): 9783319494920
Издательство: Springer
Рейтинг:
Цена: 7685.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

This volume contains some lecture notes of the 12th Reasoning Web Summer School (RW 2016), held in Aberdeen, UK, in September 2016.

In 2016, the theme of the school was "Logical Foundation of Knowledge Graph Construction and Query Answering". The notion of knowledge graph has become popular since Google started to use it to improve its search engine in 2012. Inspired by the success of Google, knowledge graphs are gaining momentum in the World Wide Web arena. Recent years have witnessed increasing industrial take-ups by other Internet giants, including Facebook's Open Graph and Microsoft's Satori.

The aim of the lecture note is to provide a logical foundation for constructing and querying knowledge graphs. Our journey starts from the introduction of Knowledge Graph as well as its history, and the construction of knowledge graphs by considering both explicit and implicit author intentions. The book will then cover various topics, including how to revise and reuse ontologies (schema of knowledge graphs) in a safe way, how to combine navigational queries with basic pattern matching queries for knowledge graph, how to setup a environment to do experiments on knowledge graphs, how to deal with inconsistencies and fuzziness in ontologies and knowledge graphs, and how to combine machine learning and machine reasoning for knowledge graphs.

Handbook of Research on Innovative Database Query Processing Techniques

Автор: Li Yan
Название: Handbook of Research on Innovative Database Query Processing Techniques
ISBN: 1466687673 ISBN-13(EAN): 9781466687677
Издательство: Mare Nostrum (Eurospan)
Рейтинг:
Цена: 48787.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Focuses on database query processing methods, technologies, and applications. Aimed at providing an all-inclusive reference source of technologies and practices in advanced database query systems, this book investigates various techniques, including database and XML queries, spatiotemporal data queries, big data queries, metadata queries, and applications of database query systems.

Data Management and Query Processing in Semantic Web Databases

Автор: Sven Groppe
Название: Data Management and Query Processing in Semantic Web Databases
ISBN: 3642435491 ISBN-13(EAN): 9783642435492
Издательство: Springer
Рейтинг:
Цена: 13974.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Covering a vital aspect of the Semantic Web, itself the subject of virtually exponential increases in research dollars, this volume focuses on high-performance data management and the processing of queries in complex, real-world web applications.

Medical knowledge extraction from big data

Автор: Koutsojannis, Constantinos M.
Название: Medical knowledge extraction from big data
ISBN: 1536179256 ISBN-13(EAN): 9781536179255
Издательство: Nova Science
Рейтинг:
Цена: 22491.00 р.
Наличие на складе: Невозможна поставка.

Описание: Data mining refers to the activity of going through big data sets to look for relevant information. As human health care data are the most difficult of all data to collect and their primary direction is the treatment of patients, and secondarily dealing with research, almost the only vindication for collecting medical data is to benefit the disease. All data miners should take into account that Medical Knowledge Extraction is internally connected with the Evidence-Based Medical approach because it uses data for already treated or not patients and there are times that opposites to Guideline Based medical practice. Additonally all researchers should be aware when are dealing with medical databases they may face the possibility that their work will never be accepted or even used from health care professionals if all these obligations will not be correctly addressed from the early beginning. In the present book, one can find after the three introductory chapters, a number of successfully evaluated applications that have been developed after mining approaches in Big or smaller amount (according to the application) of medical Data in different fields of every day clinical practice from teams of experts. The challenging adventure of Medical Knowledge Extraction can be followed by ambitious researchers finally resulting in a successful decision support system, that some times is so novel that it will provide new directions for basic or clinical research further that the existed. At least this procedure will save the experience of the best doctors on duty and will help young residents to be better and better.

Machine Learning and Knowledge Extraction

Автор: Andreas Holzinger; Peter Kieseberg; A Min Tjoa; Ed
Название: Machine Learning and Knowledge Extraction
ISBN: 303029725X ISBN-13(EAN): 9783030297251
Издательство: Springer
Рейтинг:
Цена: 6986.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book constitutes the refereed proceedings of the IFIP TC 5, TC 12, WG 8.4, 8.9, 12.9 International Cross-Domain Conference for Machine Learning and Knowledge Extraction, CD-MAKE 2019, held in Canterbury, UK, in August 2019.The 25 revised full papers presented were carefully reviewed and selected from 45 submissions.

Signal Processing Techniques for Knowledge Extraction and Information Fusion

Автор: Danilo Mandic; Martin Golz; Anthony Kuh; Dragan Ob
Название: Signal Processing Techniques for Knowledge Extraction and Information Fusion
ISBN: 1441944958 ISBN-13(EAN): 9781441944955
Издательство: Springer
Рейтинг:
Цена: 20896.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book brings together the latest research achievements from signal processing and related disciplines, consolidating existing and proposed directions in DSP-based knowledge extraction and information fusion.

Managing Requirements Knowledge

Автор: Walid Maalej; Anil Kumar Thurimella
Название: Managing Requirements Knowledge
ISBN: 3642443826 ISBN-13(EAN): 9783642443824
Издательство: Springer
Рейтинг:
Цена: 13974.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Addressing crucial, often neglected issues in software projects, this volume presents theoretical approaches and practical results in managing requirements knowledge, focusing on the potential of `lightweight` management technologies such as semantic `wikis`.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия