Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Machine Learning and Knowledge Extraction, Andreas Holzinger; Peter Kieseberg; A Min Tjoa; Ed


Варианты приобретения
Цена: 6986.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Andreas Holzinger; Peter Kieseberg; A Min Tjoa; Ed
Название:  Machine Learning and Knowledge Extraction
ISBN: 9783030297251
Издательство: Springer
Классификация:







ISBN-10: 303029725X
Обложка/Формат: Soft cover
Страницы: 416
Вес: 0.66 кг.
Дата издания: 2019
Серия: Information Systems and Applications, incl. Internet/Web, and HCI
Язык: English
Издание: 1st ed. 2019
Иллюстрации: 98 illustrations, color; 40 illustrations, black and white; xiii, 416 p. 138 illus., 98 illus. in color.
Размер: 234 x 156 x 22
Читательская аудитория: Professional & vocational
Основная тема: Computer Science
Подзаголовок: Third IFIP TC 5, TC 12, WG 8.4, WG 8.9, WG 12.9 International Cross-Domain Conference, CD-MAKE 2019, Canterbury, UK, August 26–29, 2019, Proceedings
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание: This book constitutes the refereed proceedings of the IFIP TC 5, TC 12, WG 8.4, 8.9, 12.9 International Cross-Domain Conference for Machine Learning and Knowledge Extraction, CD-MAKE 2019, held in Canterbury, UK, in August 2019.The 25 revised full papers presented were carefully reviewed and selected from 45 submissions.


Towards Integrative Machine Learning and Knowledge Extraction

Автор: Andreas Holzinger; Randy Goebel; Massimo Ferri; Va
Название: Towards Integrative Machine Learning and Knowledge Extraction
ISBN: 3319697749 ISBN-13(EAN): 9783319697741
Издательство: Springer
Рейтинг:
Цена: 7685.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Towards integrative Machine Learning & Knowledge Extraction.- Machine Learning and Knowledge Extraction in Digital Pathology needs an integrative approach.- Comparison of Public-Domain Software and Services for Probabilistic Record Linkage and Address Standardization.- Better Interpretable Models for Proteomics Data Analysis Using rule-based Mining.- Probabilistic Logic Programming in Action.- Persistent topology for natural data analysis - A survey.- Predictive Models for Differentiation between Normal and Abnormal EEG through Cross-Correlation and Machine Learning Techniques.- A Brief Philosophical Note on Information.- Beyond Volume: The Impact of Complex Healthcare Data on the Machine Learning Pipeline.- A Fast Semi-Automatic Segmentation Tool for Processing Brain Tumor Images.- Topological characteristics of oil and gas reservoirs and their applications.- Convolutional and Recurrent Neural Networks for Activity Recognition in Smart Environment.

Computer Age Statistical Inference

Автор: Bradley Efron and Trevor Hastie
Название: Computer Age Statistical Inference
ISBN: 1107149894 ISBN-13(EAN): 9781107149892
Издательство: Cambridge Academ
Рейтинг:
Цена: 9029.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The twenty-first century has seen a breathtaking expansion of statistical methodology, both in scope and in influence. 'Big data', 'data science', and 'machine learning' have become familiar terms in the news, as statistical methods are brought to bear upon the enormous data sets of modern science and commerce. How did we get here? And where are we going? This book takes us on an exhilarating journey through the revolution in data analysis following the introduction of electronic computation in the 1950s. Beginning with classical inferential theories - Bayesian, frequentist, Fisherian - individual chapters take up a series of influential topics: survival analysis, logistic regression, empirical Bayes, the jackknife and bootstrap, random forests, neural networks, Markov chain Monte Carlo, inference after model selection, and dozens more. The distinctly modern approach integrates methodology and algorithms with statistical inference. The book ends with speculation on the future direction of statistics and data science.

Signal Processing Techniques for Knowledge Extraction and Information Fusion

Автор: Danilo Mandic; Martin Golz; Anthony Kuh; Dragan Ob
Название: Signal Processing Techniques for Knowledge Extraction and Information Fusion
ISBN: 1441944958 ISBN-13(EAN): 9781441944955
Издательство: Springer
Рейтинг:
Цена: 20896.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book brings together the latest research achievements from signal processing and related disciplines, consolidating existing and proposed directions in DSP-based knowledge extraction and information fusion.

An Introduction to Machine Learning

Автор: Miroslav Kubat
Название: An Introduction to Machine Learning
ISBN: 3319348868 ISBN-13(EAN): 9783319348865
Издательство: Springer
Рейтинг:
Цена: 6986.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book presents basic ideas of machine learning in a way that is easy to understand, by providing hands-on practical advice, using simple examples, and motivating students with discussions of interesting applications.

Machine Learning and Knowledge Discovery in Databases

Автор: Wray Buntine; Marko Grobelnik; Dunja Mladenic; Joh
Название: Machine Learning and Knowledge Discovery in Databases
ISBN: 3642041736 ISBN-13(EAN): 9783642041730
Издательство: Springer
Рейтинг:
Цена: 18167.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book constitutes the refereed proceedings of the joint conference on Machine Learning and Knowledge Discovery in Databases: ECML PKDD 2009, held in Bled, Slovenia, in September 2009.

Machine Learning and Knowledge Discovery in Databases

Автор: Frasconi
Название: Machine Learning and Knowledge Discovery in Databases
ISBN: 3319462261 ISBN-13(EAN): 9783319462264
Издательство: Springer
Рейтинг:
Цена: 13696.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The three volume set LNAI 9851, LNAI 9852, and LNAI 9853 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2016, held in Riva del Garda, Italy, in September 2016.

Machine Learning and Knowledge Discovery in Databases

Автор: Frasconi
Название: Machine Learning and Knowledge Discovery in Databases
ISBN: 3319461273 ISBN-13(EAN): 9783319461274
Издательство: Springer
Рейтинг:
Цена: 13696.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The three volume set LNAI 9851, LNAI 9852, and LNAI 9853 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2016, held in Riva del Garda, Italy, in September 2016.

Machine Learning and Knowledge Discovery in Databases

Автор: Berendt
Название: Machine Learning and Knowledge Discovery in Databases
ISBN: 3319461303 ISBN-13(EAN): 9783319461304
Издательство: Springer
Рейтинг:
Цена: 8106.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The three volume set LNAI 9851, LNAI 9852, and LNAI 9853 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2016, held in Riva del Garda, Italy, in September 2016.

Data Mining. Practical Machine Learning Tools and Techniques, 4 ed.

Автор: Witten, Ian H.
Название: Data Mining. Practical Machine Learning Tools and Techniques, 4 ed.
ISBN: 0128042915 ISBN-13(EAN): 9780128042915
Издательство: Elsevier Science
Рейтинг:
Цена: 9262.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

Data Mining: Practical Machine Learning Tools and Techniques, Fourth Edition, offers a thorough grounding in machine learning concepts, along with practical advice on applying these tools and techniques in real-world data mining situations. This highly anticipated fourth edition of the most acclaimed work on data mining and machine learning teaches readers everything they need to know to get going, from preparing inputs, interpreting outputs, evaluating results, to the algorithmic methods at the heart of successful data mining approaches.

Extensive updates reflect the technical changes and modernizations that have taken place in the field since the last edition, including substantial new chapters on probabilistic methods and on deep learning. Accompanying the book is a new version of the popular WEKA machine learning software from the University of Waikato. Authors Witten, Frank, Hall, and Pal include today's techniques coupled with the methods at the leading edge of contemporary research.

Please visit the book companion website at https: //www.cs.waikato.ac.nz/ ml/weka/book.html.

It contains

  • Powerpoint slides for Chapters 1-12. This is a very comprehensive teaching resource, with many PPT slides covering each chapter of the book
  • Online Appendix on the Weka workbench; again a very comprehensive learning aid for the open source software that goes with the book
  • Table of contents, highlighting the many new sections in the 4th edition, along with reviews of the 1st edition, errata, etc.

  • Provides a thorough grounding in machine learning concepts, as well as practical advice on applying the tools and techniques to data mining projects
  • Presents concrete tips and techniques for performance improvement that work by transforming the input or output in machine learning methods
  • Includes a downloadable WEKA software toolkit, a comprehensive collection of machine learning algorithms for data mining tasks-in an easy-to-use interactive interface
  • Includes open-access online courses that introduce practical applications of the material in the book
Machine Learning and Knowledge Extraction

Автор: Andreas Holzinger; Peter Kieseberg; A Min Tjoa; Ed
Название: Machine Learning and Knowledge Extraction
ISBN: 3319997394 ISBN-13(EAN): 9783319997391
Издательство: Springer
Рейтинг:
Цена: 6986.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book constitutes the refereed proceedings of the IFIP TC 5, WG 8.4, 8.9, 12.9 International Cross-Domain Conference for Machine Learning and Knowledge Extraction, CD-MAKE 2018, held in Hamburg, Germany, in September 2018.The 25 revised full papers presented were carefully reviewed and selected from 45 submissions. The papers are clustered under the following topical sections: MAKE-Main Track, MAKE-Text, MAKE-Smart Factory, MAKE-Topology, and MAKE Explainable AI.

Managing Data From Knowledge Bases: Querying and Extraction

Автор: Wei Emma Zhang; Quan Z. Sheng
Название: Managing Data From Knowledge Bases: Querying and Extraction
ISBN: 3030069400 ISBN-13(EAN): 9783030069407
Издательство: Springer
Рейтинг:
Цена: 15372.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: In this book, the authors first address the research issues by providing a motivating scenario, followed by the exploration of the principles and techniques of the challenging topics. Then they solve the raised research issues by developing a series of methodologies. More specifically, the authors study the query optimization and tackle the query performance prediction for knowledge retrieval. They also handle unstructured data processing, data clustering for knowledge extraction. To optimize the queries issued through interfaces against knowledge bases, the authors propose a cache-based optimization layer between consumers and the querying interface to facilitate the querying and solve the latency issue. The cache depends on a novel learning method that considers the querying patterns from individual’s historical queries without having knowledge of the backing systems of the knowledge base. To predict the query performance for appropriate query scheduling, the authors examine the queries’ structural and syntactical features and apply multiple widely adopted prediction models. Their feature modelling approach eschews the knowledge requirement on both the querying languages and system.To extract knowledge from unstructured Web sources, the authors examine two kinds of Web sources containing unstructured data: the source code from Web repositories and the posts in programming question-answering communities. They use natural language processing techniques to pre-process the source codes and obtain the natural language elements. Then they apply traditional knowledge extraction techniques to extract knowledge. For the data from programming question-answering communities, the authors make the attempt towards building programming knowledge base by starting with paraphrase identification problems and develop novel features to accurately identify duplicate posts. For domain specific knowledge extraction, the authors propose to use clustering technique to separate knowledge into different groups. They focus on developing a new clustering algorithm that uses manifold constraint in the optimization task and achieves fast and accurate performance.For each model and approach presented in this dissertation, the authors have conducted extensive experiments to evaluate it using either public dataset or synthetic data they generated.

Machine Learning and Knowledge Discovery in Databases

Автор: Wray Buntine; Marko Grobelnik; Dunja Mladenic; Joh
Название: Machine Learning and Knowledge Discovery in Databases
ISBN: 3642041795 ISBN-13(EAN): 9783642041792
Издательство: Springer
Рейтинг:
Цена: 18167.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book constitutes the refereed proceedings of the joint conference on Machine Learning and Knowledge Discovery in Databases: ECML PKDD 2009, held in Bled, Slovenia, in September 2009.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия