Trends and Perspectives in Linear Statistical Inference, M?jgan Tez; Dietrich von Rosen
Автор: Trevor Hastie; Robert Tibshirani; Jerome Friedman Название: The Elements of Statistical Learning ISBN: 0387848576 ISBN-13(EAN): 9780387848570 Издательство: Springer Рейтинг: Цена: 10480.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This major new edition features many topics not covered in the original, including graphical models, random forests, and ensemble methods. As before, it covers the conceptual framework for statistical data in our rapidly expanding computerized world.
Автор: Tez Название: Trends and Perspectives in Linear Statistical Inference ISBN: 3319732404 ISBN-13(EAN): 9783319732404 Издательство: Springer Рейтинг: Цена: 13974.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Foreword.- Comparison of estimation methods for inverse Weibull distribution (F. G. Akgьl, B. Şenoğlu).- Liu-type negative binomial regression (Y. Asar).- Appraisal of performance of three tree-based classification methods (H. D. Asfha, B. K. Kilinc).- High-dimensional CLTs for individual Mahalanobis distances (D. Dai, T. Holgersson).- Bootstrap type-1 fuzzy functions approach for time series forecasting (A. Z. Dalar, E. Eğrioğlu).- A weighted ensemble learning by SVM for longitudinal data: Turkish bank bankruptcy (B. E. Erdogan, S. Ц. Akyьz).- The complementary exponential phase type distribution (S. Eryilmaz).- Best linear unbiased prediction: Some properties of linear prediction sufficiency in the linear model (J. Isotalo, A. Markiewicz, S. Puntanen).- A note on circular m-consecutive-k-out-of-n: F Systems (C. Kan).- A categorical principal component regression on computer assisted instruction in probability domain (T. Kapucu, O. Ilk, İ. Batmaz).- Contemporary robust optimal design strategies (T. E. O'Brien).- Alternative approaches for the use of uncertain prior information to overcome the rank-deficiency of a linear model (B. Schaffrin, K. Snow, X. Fang).- Exact likelihood-based point and interval estimation for lifetime characteristics of Laplace distribution based on hybrid Type-I and Type-II censored data (F. Su, N. Balakrishnan, X. Zhu).- Statistical inference for two-compartment model parameters with bootstrap method and genetic algorithm (Ц. Tьrkşen, M. Tez).
Finance and insurance companies are facing a wide range of parametric statistical problems. Statistical experiments generated by a sample of independent and identically distributed random variables are frequent and well understood, especially those consisting of probability measures of an exponential type. However, the aforementioned applications also offer non-classical experiments implying observation samples of independent but not identically distributed random variables or even dependent random variables.
Three examples of such experiments are treated in this book. First, the Generalized Linear Models are studied. They extend the standard regression model to non-Gaussian distributions. Statistical experiments with Markov chains are considered next. Finally, various statistical experiments generated by fractional Gaussian noise are also described.
In this book, asymptotic properties of several sequences of estimators are detailed. The notion of asymptotical efficiency is discussed for the different statistical experiments considered in order to give the proper sense of estimation risk. Eighty examples and computations with R software are given throughout the text.
Examines a range of statistical inference methods in the context of finance and insurance applications
Presents the LAN (local asymptotic normality) property of likelihoods
Combines the proofs of LAN property for different statistical experiments that appears in financial and insurance mathematics
Provides the proper description of such statistical experiments and invites readers to seek optimal estimators (performed in R) for such statistical experiments
Автор: Cheng Russell C H Название: Non-Standard Parametric Statistical Inference ISBN: 0198505043 ISBN-13(EAN): 9780198505044 Издательство: Oxford Academ Рейтинг: Цена: 19404.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This research monograph gives a unified view of non-standard estimation problems. It provides an overall mathematical framework, but also draws together and studies in detail a large number of practical problems, previously only treated separately, offering solution methods and numerical procedures for each.
Автор: Berzuini C Название: Causality: Statistical Perspectives and Applications ISBN: 0470665564 ISBN-13(EAN): 9780470665565 Издательство: Wiley Рейтинг: Цена: 10763.00 р. Наличие на складе: Поставка под заказ.
Описание: Providing a thorough treatment on statistical causality, this resource presents a broad collection of contributions from experts in their fields. Methods and their applications are provided with theoretical background and emphasis is given to practice rather than theory, with technical content kept to a minimum.
Автор: Little Название: Statistical Analysis with Missing Data, Third Edit ion ISBN: 0470526793 ISBN-13(EAN): 9780470526798 Издательство: Wiley Рейтинг: Цена: 12664.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Reflecting new application topics, Statistical Analysis with Missing Data offers a thoroughly up-to-date, reorganized survey of current methodology for handling missing data problems. The third edition reviews historical approaches to the subject and describe rigorous yet simple methods for multivariate analysis with missing values.
Автор: T. Calinski; W. Klonecki Название: Linear Statistical Inference ISBN: 0387962557 ISBN-13(EAN): 9780387962559 Издательство: Springer Рейтинг: Цена: 16769.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: An International Statistical Conference on Linear Inference was held in Poznan, Poland, on June 4-8, 1984. If the conference was really a success, it was due to all its participants who in various ways were devoting their time and efforts to make the conference fruitful and enjoyable.
Автор: J.G. Kalbfleisch Название: Probability and Statistical Inference ISBN: 146127009X ISBN-13(EAN): 9781461270096 Издательство: Springer Рейтинг: Цена: 6986.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: A carefully written text, suitable as an introductory course for second or third year students. The main scope of the text guides students towards a critical understanding and handling of data sets together with the ensuing testing of hypotheses.
Автор: Moulin Pierre Название: Statistical Inference for Engineers and Data Scientists ISBN: 1107185920 ISBN-13(EAN): 9781107185920 Издательство: Cambridge Academ Рейтинг: Цена: 10138.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: An up-to-date and mathematically accessible introduction to the tools needed to address modern inference problems in engineering and data science. Richly illustrated with examples and exercises connecting the theory with practice, it is the `go to` guide for students studying the topic, and an excellent reference for researchers and practitioners.
Автор: Bradley Efron and Trevor Hastie Название: Computer Age Statistical Inference ISBN: 1107149894 ISBN-13(EAN): 9781107149892 Издательство: Cambridge Academ Рейтинг: Цена: 9029.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The twenty-first century has seen a breathtaking expansion of statistical methodology, both in scope and in influence. 'Big data', 'data science', and 'machine learning' have become familiar terms in the news, as statistical methods are brought to bear upon the enormous data sets of modern science and commerce. How did we get here? And where are we going? This book takes us on an exhilarating journey through the revolution in data analysis following the introduction of electronic computation in the 1950s. Beginning with classical inferential theories - Bayesian, frequentist, Fisherian - individual chapters take up a series of influential topics: survival analysis, logistic regression, empirical Bayes, the jackknife and bootstrap, random forests, neural networks, Markov chain Monte Carlo, inference after model selection, and dozens more. The distinctly modern approach integrates methodology and algorithms with statistical inference. The book ends with speculation on the future direction of statistics and data science.
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru